Advertisement

Science China Chemistry

, Volume 62, Issue 4, pp 409–416 | Cite as

Celastrol as a tool for the study of the biological events of metabolic diseases

  • Gongcai Lan
  • Jie Zhang
  • Wenbo Ye
  • Fan Yang
  • Ang LiEmail author
  • Weiwei HeEmail author
  • Wei-Dong ZhangEmail author
Mini Reviews

Abstract

Celastrol is a pentacyclic triterpenoid isolated from Tripterygium wilfordii that has long been used in traditional Chinese medicine for treating rheumatoid arthritis. Previous studies showed that celastrol possessed diverse biological activities, including anti-inflammatory and anticancer properties. Interestingly, most recent literatures revealed the important role of celastrol against metabolic disorders. Herein, we provide an overview of the modes of action of celastrol for combating metabolic diseases such as obesity and type 2 diabetes. The anti-obesity effect of celastrol results from relieving endoplasmic reticulum stress in hypothalamus, regulating HSF1-PGC1α axis in the adipose tissue and muscle, and alleviating inflammation via Nur77 mediated autophagy. Celastrol also reverses insulin resistance via NF-κB signaling pathway to protect against type 2 diabetes.

Keywords

celastrol obesity type 2 diabetes endoplasmic reticulum stress inflammation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Professor of Chang Jiang Scholars Program, the National Natural Science Foundation of China (81520108030, 21472238, 81502956, 21572064, 21525209, 21621002, 21772225, 21761142003), Chinese Academy of Sciences (Strategic Priority Research Program XDB20000000 and Key Research Program of Frontier Sciences QYZDB-SSW-SLH040), Shanghai Science and Technology Commission (15JC1400400, 17XD1404600), the National Program for Support of Top-Notch Young Professionals of China, the K. C. Wong Education Foundation, and the State Key Laboratory of Innovative Natural Medicine and Traditional Chinese Medicine Injections (QFSKL2017003, QFSKL2017004).

References

  1. 1.
    Kong LY, Tan RX. Nat Prod Rep, 2015, 32: 1617–1621CrossRefGoogle Scholar
  2. 2.
    Martino E, Della Volpe S, Terribile E, Benetti E, Sakaj M, Centamore A, Sala A, Collina S. Bioorg Med Chem Lett, 2017, 27: 701–707CrossRefGoogle Scholar
  3. 3.
    Chou TQ, Mei PF. Chin J Physiol, 1936, 10: 529–534Google Scholar
  4. 4.
    Gisvold O. J Amer Pharm Assoc, 1939, 28: 440–443Google Scholar
  5. 5.
    Gisvold O. J Amer Pharm Assoc (Sci Ed), 1940, 29: 12–14CrossRefGoogle Scholar
  6. 6.
    Gisvold O. J Amer Pharm Assoc (Sci Ed), 1940, 29: 432–434CrossRefGoogle Scholar
  7. 7.
    Gisvold O. J Amer Pharm Assoc (Sci Ed), 1942, 31: 529–532CrossRefGoogle Scholar
  8. 8.
    Salminen A, Lehtonen M, Paimela T, Kaarniranta K. Biochem Biophys Res Commun, 2010, 394: 439–442CrossRefGoogle Scholar
  9. 9.
    Nakanishi K, Kakisawa H, Hirata Y. J Am Chem Soc, 1955, 77: 3169–3171CrossRefGoogle Scholar
  10. 10.
    Toteva MM, Richard JP. Adv Phys Org Chem, 2011, 45: 39–91Google Scholar
  11. 11.
    Klaic L, Trippier PC, Mishra RK, Morimoto RI, Silverman RB. J Am Chem Soc, 2011, 133: 19634–19637CrossRefGoogle Scholar
  12. 12.
    Camelio AM, Johnson TC, Siegel D. J Am Chem Soc, 2015, 137: 11864–11867CrossRefGoogle Scholar
  13. 13.
    Chen SR, Dai Y, Zhao J, Lin L, Wang Y, Wang Y. Front Pharmacol, 2018, 9: 104CrossRefGoogle Scholar
  14. 14.
    Cascão R, Fonseca JE, Moita LF. Front Med, 2017, 4: 69CrossRefGoogle Scholar
  15. 15.
    Sreeramulu S, Gande SL, Göbel M, Schwalbe H. Angew Chem Int Ed, 2009, 48: 5853–5855CrossRefGoogle Scholar
  16. 16.
    Klaic L, Morimoto RI, Silverman RB. ACS Chem Biol, 2012, 7: 928–937CrossRefGoogle Scholar
  17. 17.
    Zhao Q, Ding Y, Deng Z, Lee OY, Gao P, Chen P, Rose RJ, Zhao H, Zhang Z, Tao XP, Heck AJR, Kao R, Yang D. Chem Sci, 2015, 6: 4124–4130CrossRefGoogle Scholar
  18. 18.
    Leung D, Hardouin C, Boger DL, Cravatt BF. Nat Biotechnol, 2003, 21: 687–691CrossRefGoogle Scholar
  19. 19.
    Zhou Y, Li W, Wang M, Zhang X, Zhang H, Tong X, Xiao Y. Mol BioSyst, 2017, 13: 83–91CrossRefGoogle Scholar
  20. 20.
    Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Nature, 2006, 443: 289–295CrossRefGoogle Scholar
  21. 21.
    Myers Jr MG, Leibel RL, Seeley RJ, Schwartz MW. Trends Endocrinol Metab, 2010, 21: 643–651CrossRefGoogle Scholar
  22. 22.
    Horvath TL. Nat Neurosci, 2005, 8: 561–565CrossRefGoogle Scholar
  23. 23.
    Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Nature, 1996, 379: 632–635CrossRefGoogle Scholar
  24. 24.
    Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua Jr. SC, Elmquist JK, Lowell BB. Neuron, 2004, 42: 983–991Google Scholar
  25. 25.
    Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Science, 1995, 269: 543–546CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Nature, 1994, 372: 425–432CrossRefGoogle Scholar
  27. 27.
    Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. Nat Med, 1995, 1: 1311–1314CrossRefGoogle Scholar
  28. 28.
    Münzberg H, Myers MG. Nat Neurosci, 2005, 8: 566–570CrossRefGoogle Scholar
  29. 29.
    Hotamisligil GS. Cell, 2010, 140: 900–917CrossRefGoogle Scholar
  30. 30.
    Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS. Science, 2004, 306: 457–461CrossRefGoogle Scholar
  31. 31.
    Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers Jr MG, Ozcan U. Cell Metabolism, 2009, 9: 35–51CrossRefGoogle Scholar
  32. 32.
    Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Görgün CZ, Hotamisligil GS. Science, 2006, 313: 1137–1140CrossRefGoogle Scholar
  33. 33.
    Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U. Cell, 2015, 161: 999–1011CrossRefGoogle Scholar
  34. 34.
    Banks AS, Davis SM, Bates SH, Myers Jr MG. J Biol Chem, 2000, 275: 14563–14572CrossRefGoogle Scholar
  35. 35.
    Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, Shulman GI, Fu XY. Proc Natl Acad Sci USA, 2004, 101: 4661–4666CrossRefGoogle Scholar
  36. 36.
    Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AWK, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E, Neel BG, Schwartz MW, Myers MG. Nature, 2003, 421: 856–859CrossRefGoogle Scholar
  37. 37.
    Piper ML, Unger EK, Myers Jr MG, Xu AW. Mol Endocrinol, 2008, 22: 751–759CrossRefGoogle Scholar
  38. 38.
    Lee J, Liu J, Feng X, Salazar Hernández MA, Mucka P, Ibi D, Choi JW, Ozcan U. Nat Med, 2016, 22: 1023–1032CrossRefGoogle Scholar
  39. 39.
    Ma X, Xu L, Alberobello AT, Gavrilova O, Bagattin A, Skarulis M, Liu J, Finkel T, Mueller E. Cell Metab, 2015, 22: 695–708CrossRefGoogle Scholar
  40. 40.
    Celi FS, Le TN, Ni B. Trends Endocrinol Metab, 2015, 26: 238–247CrossRefGoogle Scholar
  41. 41.
    Medina-Gómez G. Best Pract Res Clin Endocrinol Metab, 2012, 26: 791–804CrossRefGoogle Scholar
  42. 42.
    Nunnari J, Suomalainen A. Cell, 2012, 148: 1145–1159CrossRefGoogle Scholar
  43. 43.
    Sanchis-Gomar F, Garcia-Gimenez J, Gomez-Cabrera M, Pallardo F. Curr Pharm Des, 2014, 20: 5619–5633CrossRefGoogle Scholar
  44. 44.
    Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, Estall JL, Chatterjee Bhowmick D, Shulman GI, Spiegelman BM. Proc Natl Acad Sci USA, 2012, 109: 9635–9640CrossRefGoogle Scholar
  45. 45.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Cell, 1999, 98: 115–124CrossRefGoogle Scholar
  46. 46.
    Morimoto RI. Cold Spring Harb Symp Quant Biol, 2011, 76: 91–99CrossRefGoogle Scholar
  47. 47.
    Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. Cell, 1998, 94: 471–480CrossRefGoogle Scholar
  48. 48.
    Westerheide SD, Bosman JD, Mbadugha BNA, Kawahara TLA, Matsumoto G, Kim S, Gu W, Devlin JP, Silverman RB, Morimoto RI. J Biol Chem, 2004, 279: 56053–56060CrossRefGoogle Scholar
  49. 49.
    Zhang T, Hamza A, Cao X, Wang B, Yu S, Zhan CG, Sun D. Mol Cancer Ther, 2008, 7: 162–170CrossRefGoogle Scholar
  50. 50.
    Straub RH. Nat Rev Rheumatol, 2017, 13: 743–751CrossRefGoogle Scholar
  51. 51.
    Valdearcos M, Xu AW, Koliwad SK. Annu Rev Physiol, 2015, 77: 131–160CrossRefGoogle Scholar
  52. 52.
    Baker RG, Hayden MS, Ghosh S. Cell Metab, 2011, 13: 11–22CrossRefGoogle Scholar
  53. 53.
    Hotamisligil GS. Nature, 2006, 444: 860–867CrossRefGoogle Scholar
  54. 54.
    Kim Y, Kang H, Jang SW, Ko J. Cell Physiol Biochem, 2011, 28: 175–184CrossRefGoogle Scholar
  55. 55.
    Shao L, Zhou Z, Cai Y, Castro P, Dakhov O, Shi P, Bai Y, Ji H, Shen W, Wang J. PLoS ONE, 2013, 8: e58391CrossRefGoogle Scholar
  56. 56.
    Ni H, Zhao W, Kong X, Li H, Ouyang J. PLoS ONE, 2014, 9: e95846CrossRefGoogle Scholar
  57. 57.
    Yang H, Chen D, Cui QC, Yuan X, Dou QP. Cancer Res, 2006, 66: 4758–4765CrossRefGoogle Scholar
  58. 58.
    Lu L, Shi W, Deshmukh RR, Long J, Cheng X, Ji W, Zeng G, Chen X, Zhang Y, Dou QP. PLoS ONE, 2014, 9: e113783CrossRefGoogle Scholar
  59. 59.
    Pearen MA, Muscat GEO. Mol Endocrinol, 2010, 24: 1891–1903CrossRefGoogle Scholar
  60. 60.
    Hu M, Luo Q, Alitongbieke G, Chong S, Xu C, Xie L, Chen X, Zhang D, Zhou Y, Wang Z, Ye X, Cai L, Zhang F, Chen H, Jiang F, Fang H, Yang S, Liu J, Diaz-Meco MT, Su Y, Zhou H, Moscat J, Lin X, Zhang XK. Mol Cell, 2017, 66: 141–153.e6CrossRefGoogle Scholar
  61. 61.
    Mizushima N, Yoshimori T, Levine B. Cell, 2010, 140: 313–326CrossRefGoogle Scholar
  62. 62.
    Green DR, Galluzzi L, Kroemer G. Science, 2011, 333: 1109–1112CrossRefGoogle Scholar
  63. 63.
    Perez-Sieira S, Martinez G, Porteiro B, Lopez M, Vidal A, Nogueiras R, Dieguez C. PLoS ONE, 2013, 8: e53836CrossRefGoogle Scholar
  64. 64.
    Chen Y, Wu R, Chen HZ, Xiao Q, Wang WJ, He JP, Li XX, Yu XW, Li L, Wang P, Wan XC, Tian XH, Li SJ, Yu X, Wu Q. Diabetes, 2015, 64: 2069–2081CrossRefGoogle Scholar
  65. 65.
    Wilcox G. Clin Biochem Rev, 2005, 26: 19–39Google Scholar
  66. 66.
    Czech MP. Nat Med, 2017, 23: 804–814CrossRefGoogle Scholar
  67. 67.
    Williamson RT. Br Med J, 1901, 1: 760–762CrossRefGoogle Scholar
  68. 68.
    Kopp E, Ghosh S. Science, 1994, 265: 956–959CrossRefGoogle Scholar
  69. 69.
    Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE. Science, 2001, 293: 1673–1677CrossRefGoogle Scholar
  70. 70.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Science, 1993, 259: 87–91CrossRefGoogle Scholar
  71. 71.
    Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Nature, 1997, 389: 610–614CrossRefGoogle Scholar
  72. 72.
    Huang S, Rutkowsky JM, Snodgrass RG, Ono-Moore KD, Schneider DA, Newman JW, Adams SH, Hwang DH. J Lipid Res, 2012, 53: 2002–2013CrossRefGoogle Scholar
  73. 73.
    Han LP, Li CJ, Sun B, Xie Y, Guan Y, Ma ZJ, Chen LM. J Diabetes Res, 2016, 2016: 1–10CrossRefGoogle Scholar
  74. 74.
    Feng H, Su R, Song Y, Wang C, Lin L, Ma J, Yang H. PLoS ONE, 2016, 11: e0157185CrossRefGoogle Scholar
  75. 75.
    Wang Y, Qian Y, Fang Q, Zhong P, Li W, Wang L, Fu W, Zhang Y, Xu Z, Li X, Liang G. Nat Commun, 2017, 8: 13997CrossRefGoogle Scholar
  76. 76.
    Zhang X, Wang Y, Ge HY, Gu YJ, Cao FF, Yang CX, Uzan G, Peng B, Zhang DH. J Cell Physiol, 2018, 233: 6814–6824CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Pharmaceutical UniversityGuangzhouChina
  2. 2.Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and TechnologyShanghaiChina
  3. 3.State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
  4. 4.Department of Phytochemistry, School of PharmacySecond Military Medical UniversityShanghaiChina
  5. 5.State Key Laboratory of Innovative Natural Medicine and Traditional Chinese Medicine InjectionsJiangxi Qingfeng Pharmaceutical Co. Ltd.GanzhouChina

Personalised recommendations