Advertisement

Double dehydrogenation of carbocyclic β-dicarbonyl compounds: Koser’s reagent can do what iodine(V) reagents can

  • Shan-Shan Liu
  • Li Wang
  • Ya-Nan Duan
  • Ao YuEmail author
  • Chi ZhangEmail author
Communications
  • 18 Downloads

Abstract

Koser’s reagent is found to be effective in the oxidative double dehydrogenation of various carbocyclic β-dicarbonyl compounds, which constitutes the first example on dehydrogenation reactivity of hypervalent iodine(III) reagents for carbocyclic carbonyl compounds. DFT calculations reveal that the rate-determining step is the electrophilic addition of PhI+OH onto enolate of monodehydrogenated product.

Keywords

Koser’s reagent double dehydrogenation hypervalent twisting 2,3-benzotropone DFT calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21472094, 21772096, 21577071), and Natural Science Foundation of Tianjin (14JCZDJC40300, 17JCYBJC20300).

Supplementary material

11426_2018_9400_MOESM1_ESM.pdf (4 mb)
Supporting Information

References

  1. 1.
    Wirth T, Ochiai M, Zhdankin VV, Koser GF, Tohma H, Kita Y. Topics in Current Chemistry: Hypervalent Iodine Chemistry-Modern Developments in Organic Synthesis. Berlin: Spinger-Verlag, 2002Google Scholar
  2. 2.
    Varvoglis A. Hypervalent Iodine in Organic Synthesis. London: Academic Press, 1997Google Scholar
  3. 3.
    Stang PJ, Zhdankin VV. Chem Rev, 1996, 96: 1123–1178CrossRefGoogle Scholar
  4. 4.
    Varvoglis A. Tetrahedron, 1997, 53: 1179–1255CrossRefGoogle Scholar
  5. 5.
    Ochiai M. Organic synthesis using hypervalent organoiodanes. In: Akiba K, Ed. Chemistry of Hypervalent Compounds. Chapter 13. New York: VCH Publishers, 1999. 359Google Scholar
  6. 6.
    Zhdankin VV, Stang PJ. Chem Rev, 2002, 102: 2523–2584CrossRefGoogle Scholar
  7. 7.
    Zhdankin VV, Stang PJ. Chem Rev, 2008, 108: 5299–5358CrossRefGoogle Scholar
  8. 8.
    Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. West Sussex: John Wiley & Sons, 2013CrossRefGoogle Scholar
  9. 9.
    Chen J, Qu H, Peng J, Chen C. Chin J Org Chem, 2015, 35: 937CrossRefGoogle Scholar
  10. 10.
    Yoshimura A, Zhdankin VV. Chem Rev, 2016, 116: 3328–3435CrossRefGoogle Scholar
  11. 11.
    Zhang X, Cong Y, Lin G, Guo X, Cao Y, Lei K, Du Y. Chin J Org Chem, 2016, 36: 2513CrossRefGoogle Scholar
  12. 12.
    Duan YN, Jiang S, Han YC, Sun B, Zhang C. Chin J Org Chem, 2016, 36: 1973–1984 (in Chinese)CrossRefGoogle Scholar
  13. 13.
    Han YC, Zhang C. Tetrahedron Lett, 2018, 59: 3052–3064CrossRefGoogle Scholar
  14. 14.
    Koser GF. Aldrichimica Acta, 2001, 34: 89–102Google Scholar
  15. 15.
    Koser GF. Adv Heterocycl Chem, 2003, 86: 225–293CrossRefGoogle Scholar
  16. 16.
    Koser GF, Rebrovic L, Wettach RH. J Org Chem, 1981, 46: 4324–4326CrossRefGoogle Scholar
  17. 17.
    Rebrovic L, Koser GF. J Org Chem, 1984, 49: 2462–2472CrossRefGoogle Scholar
  18. 18.
    Lee JC, Lee JY, Lee SJ. Tetrahedron Lett, 2004, 45: 4939–4941CrossRefGoogle Scholar
  19. 19.
    Silva, LF, Siqueira FA, Pedrozo EC, Vieira FYM, Doriguetto AC. Org Lett, 2007, 9: 1433–1436CrossRefGoogle Scholar
  20. 20.
    Herault X, Mc Nelis E. Tetrahedron, 1996, 52: 10267–10278CrossRefGoogle Scholar
  21. 21.
    Silva, LF, Vasconcelos RS, Nogueira MA. Org Lett, 2008, 10: 1017–1020CrossRefGoogle Scholar
  22. 22.
    Silva SBL, Torre AD, de Carvalho JE, Ruiz ALTG, Silva LF. Molecules, 2015, 20: 1475–1494CrossRefGoogle Scholar
  23. 23.
    Justik M, Koser G. Molecules, 2005, 10: 217–225CrossRefGoogle Scholar
  24. 24.
    Liu SJ, Zhang JZ, Tian GR, Liu P. Synth Commun, 2005, 35: 823–827CrossRefGoogle Scholar
  25. 25.
    Lazbin IM, Koser GF. J Org Chem, 1986, 51: 2669–2671CrossRefGoogle Scholar
  26. 26.
    Vasudevan A, Koser GF. J Org Chem, 1988, 53: 5158–5160CrossRefGoogle Scholar
  27. 27.
    Lazbin IM, Koser GF. J Org Chem, 1987, 52: 476–477CrossRefGoogle Scholar
  28. 28.
    Kita Y, Morimoto K, Ito M, Ogawa C, Goto A, Dohi T. J Am Chem Soc, 2009, 131: 1668–1669CrossRefGoogle Scholar
  29. 29.
    Morimoto K, Yamaoka N, Ogawa C, Nakae T, Fujioka H, Dohi T, Kita Y. Org Lett, 2010, 12: 3804–3807CrossRefGoogle Scholar
  30. 30.
    Koser GF, Wettach RH, Smith CS. J Org Chem, 1980, 45: 1543–1544CrossRefGoogle Scholar
  31. 31.
    Carman CS, Koser GF. J Org Chem, 1983, 48: 2534–2539CrossRefGoogle Scholar
  32. 32.
    Pike VW, Butt F, Shah A, Widdowson DA. J Chem S Perkin Trans 1, 1999: 245Google Scholar
  33. 33.
    For the protocols developed by Mukaiyama, Saegusa and others for synthesis of α,β-unsaturated carbonyl compounds, see: Larock RC. Comprehensive Organic Transformations. New York: John Wiley & Sons, 1999. 251Google Scholar
  34. 34.
    Buckle DR, Pinto IL. Oxidation. In: Trost BM, Ed. Comprehensive Organic Synthesis. Chapter 7. Oxford: Pergamon, 1991. 119146Google Scholar
  35. 35.
    Nicolaou KC, Montagnon T, Baran PS. Angew Chem Int Ed, 2002, 41: 993–996CrossRefGoogle Scholar
  36. 36.
    Nicolaou KC, Montagnon T, Baran PS, Zhong YL. J Am Chem Soc, 2012, 124: 2245–2258CrossRefGoogle Scholar
  37. 37.
    Nicolaou KC, Zhong YL, Baran PS. J Am Chem Soc, 2000, 122: 7596–7597CrossRefGoogle Scholar
  38. 38.
    Nicolaou KC, Montagnon T, Baran PS. Angew Chem Int Ed, 2002, 41: 1386–1389CrossRefGoogle Scholar
  39. 39.
    Cui LQ, Dong ZL, Liu K, Zhang C. Org Lett, 2011, 13: 6488–6491CrossRefGoogle Scholar
  40. 40.
    Uyanik M, Akakura M, Ishihara K. J Am Chem Soc, 2009, 131: 251–262CrossRefGoogle Scholar
  41. 41.
    Uyanik M, Ishihara K. Chem Commun, 2009, 274: 2086CrossRefGoogle Scholar
  42. 42.
    Uyanik M, Ishihara K. Aldrichimica Acta, 2010, 43: 83–91Google Scholar
  43. 43.
    Fan L, Chen W, Tang K, Wu D. Chem Lett, 2012, 41: 940–942CrossRefGoogle Scholar
  44. 44.
    Zhao XF, Zhang C. Synthesis, 2007, 2007(04): 551–557CrossRefGoogle Scholar
  45. 45.
    Duan YN, Cui LQ, Zuo LH, Zhang C. Chem Eur J, 2015, 21: 13052–13057CrossRefGoogle Scholar
  46. 46.
    Duan YN, Zhang Z, Zhang C. Org Lett, 2016, 18: 6176–6179CrossRefGoogle Scholar
  47. 47.
    Jiang S, Yan TS, Han YC, Cui LQ, Xue XS, Zhang C. J Org Chem, 2017, 82: 11691–11702CrossRefGoogle Scholar
  48. 48.
    Han YC, Zhang YD, Jia Q, Cui J, Zhang C. Org Lett, 2017, 19: 5300–5303CrossRefGoogle Scholar
  49. 49.
    Xia HD, Zhang YD, Wang YH, Zhang C. Org Lett, 2018, 20: 4052–4056CrossRefGoogle Scholar
  50. 50.
    Liu D, Guo YL, Qu J, Zhang C. Beilstein J Org Chem, 2018, 14: 1112–1119CrossRefGoogle Scholar
  51. 51.
    Dürckheimer W, Paulus EF. Angew Chem Int Ed Engl, 1985, 24: 224–225CrossRefGoogle Scholar
  52. 52.
    Liang J, Min Z, Iinuma M, Tanaka T, Mizuno M. Chem Pharm Bull, 1987, 35: 2613–2614CrossRefGoogle Scholar
  53. 53.
    Yang SJ, Fang JM, Cheng YS. Phytochemistry, 1998, 49: 2037–2043CrossRefGoogle Scholar
  54. 54.
    For details, please see supporting informationGoogle Scholar
  55. 55.
    Richter HW, Cherry BR, Zook TD, Koser GF. J Am Chem Soc, 1997, 119: 9614–9623CrossRefGoogle Scholar
  56. 56.
    Raihan MJ, Kavala V, Habib PM, Guan QZ, Kuo CW, Yao CF. J Org Chem, 2011, 76: 424–434CrossRefGoogle Scholar
  57. 57.
    Koser GF, Relenyi AG, Kalos AN, Rebrovic L, Wettach RH. J Org Chem, 1982, 47: 2487–2489CrossRefGoogle Scholar
  58. 58.
    Moriarty RM, Penmasta R, Awasthi AK, Epa WR, Prakash I. J Org Chem, 1989, 54: 1101–1104CrossRefGoogle Scholar
  59. 59.
    Su JT, Goddard WA. J Am Chem Soc, 2005, 127: 14146–14147CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of ChemistryNankai UniversityTianjinChina
  2. 2.Central Laboratory, College of ChemistryNankai UniversityTianjinChina
  3. 3.Department of Chemical Engineering and SafetyBinzhou UniversityBinzhouChina

Personalised recommendations