Advertisement

Science China Chemistry

, Volume 61, Issue 12, pp 1486–1493 | Cite as

Basic ionic liquids promoted chemical transformation of CO2 to organic carbonates

  • Jiayin HuEmail author
  • Huizhen Liu
  • Buxing HanEmail author
Mini Reviews
  • 74 Downloads

Abstract

Ionic liquids (ILs), especially basic ILs with unique physicochemical properties, have wide application in catalysis. Using basic ILs as catalysts for the conversion of cheap, abundant, nontoxic, and renewable CO2 into value-added organic carbonates is highly significant in view of environmental and economic issues. This review aims at giving a detailed overview on the recent advances on basic ILs promoted chemical transformation of CO2 to cyclic and linear carbonates. The structures of various basic ILs, as well as the basic ILs promoted reactions for the transformation of CO2 to organic carbonates are discussed in detail, including the reaction conditions, the yields of target products, the catalytic activities of basic ILs and the reaction mechanism.

Keywords

basic ionic liquid CO2 chemical transformation organic carbonates 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFB0605801), and the National Natural Science Foundation of China (21733011, 21533011).

References

  1. 1(a).
    He M, Han B. Sci China Chem, 2017, 60: 837–838CrossRefGoogle Scholar
  2. 1(b).
    He MY, Sun YH, Han BX. Angew Chem Int Ed, 2013, 52: 9620–9633CrossRefGoogle Scholar
  3. 1(c).
    Wang J, Xi J, Xia Q, Liu X, Wang Y. Sci China Chem, 2017, 60: 870–886CrossRefGoogle Scholar
  4. 2(a).
    Huber GW, Iborra S, Corma A. Chem Rev, 2006, 106: 4044–4098CrossRefGoogle Scholar
  5. 2(b).
    Zada B, Chen M, Chen C, Yan L, Xu Q, Li W, Guo Q, Fu Y. Sci China Chem, 2017, 60: 853–869CrossRefGoogle Scholar
  6. 2(c).
    An Y, Lin T, Yu F, Yang Y, Zhong L, Wu M, Sun Y. Sci China Chem, 2017, 60: 887–903CrossRefGoogle Scholar
  7. 3(a).
    Qu Z, Li Y, Huang S, Chen P, Ma X. Sci China Chem, 2017, 60: 912–919CrossRefGoogle Scholar
  8. 3(b).
    Ding J, Xu H, Wu H, Wu P. Sci China Chem, 2017, 60: 942–949CrossRefGoogle Scholar
  9. 4(a).
    Maeda C, Miyazaki Y, Ema T. Catal Sci Technol, 2014, 4: 1482–1497bCrossRefGoogle Scholar
  10. 4(b).
    Gao YN, Liu SZ, Zhao ZQ, Tao HC, Sun ZY. Acta Phys-Chim Sin, 2018, 34: 858–872Google Scholar
  11. 5(a).
    Luo R, Yang Z, Zhang W, Zhou X, Ji H. Sci China Chem, 2017, 60: 979–989CrossRefGoogle Scholar
  12. 5(b).
    Pramudita RA, Motokura K. Green Chem, 2018, 20: 4834–4843CrossRefGoogle Scholar
  13. 5(c).
    Yang ZZ, He LN, Gao J, Liu AH, Yu B. Energy Environ Sci, 2012, 5: 6602–6639CrossRefGoogle Scholar
  14. 6(a).
    Li X, He X, Liu X, He LN. Sci China Chem, 2017, 60: 841–852CrossRefGoogle Scholar
  15. 6(b).
    He Z, Liu H, Qian Q, Lu L, Guo W, Zhang L, Han B. Sci China Chem, 2017, 60: 927–933CrossRefGoogle Scholar
  16. 7(a).
    Zhou H, Lu X. Sci China Chem, 2017, 60: 904–911CrossRefGoogle Scholar
  17. 7(b).
    Lan DH, Fan N, Wang Y, Gao X, Zhang P, Chen L, Au CT, Yin SF. Chin J Catal, 2016, 37: 826–845CrossRefGoogle Scholar
  18. 7(c).
    Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kühn FE. ChemSusChem, 2015, 8: 2436–2454CrossRefGoogle Scholar
  19. 8(a).
    Riduan SN, Zhang Y. Dalton Trans, 2010, 39: 3347–3357bCrossRefGoogle Scholar
  20. 8(b).
    Yu D, Zhang Y. Proc Natl Acad Sci USA, 2010, 107: 20184–20189CrossRefGoogle Scholar
  21. 9.
    Jessop PG, Ikariya T, Noyori R. Chem Rev, 1995, 95: 259–272CrossRefGoogle Scholar
  22. 10(a).
    Yi Z, Lan D, Wang Y, Chen L, Au C, Yin S. Sci China Chem, 2017, 60: 990–996CrossRefGoogle Scholar
  23. 10(b).
    Hu J, Ma J, Zhu Q, Qian Q, Han H, Mei Q, Han B. Green Chem, 2016, 18: 382–385CrossRefGoogle Scholar
  24. 11.
    Clarke CJ, Tu WC, Levers O, Bröhl A, Hallett JP. Chem Rev, 2018, 118: 747–800CrossRefGoogle Scholar
  25. 12(a).
    Vekariya RL. J Mol Liquids, 2017, 227: 44–60CrossRefGoogle Scholar
  26. 12(b).
    Kang X, Sun X, Han B. Adv Mater, 2016, 28: 1011–1030CrossRefGoogle Scholar
  27. 12(c).
    Hallett JP, Welton T. Chem Rev, 2011, 111: 3508–3576CrossRefGoogle Scholar
  28. 13(a).
    Yang ZZ, Zhao YN, He LN. RSC Adv, 2011, 1: 545–567CrossRefGoogle Scholar
  29. 13(b).
    Cui G, Wang J, Zhang S. Chem Soc Rev, 2016, 45: 4307–4339CrossRefGoogle Scholar
  30. 13(c).
    Chaugule AA, Tamboli AH, Kim H. Fuel, 2017, 200: 316–332CrossRefGoogle Scholar
  31. 13(d).
    Zeng S, Zhang X, Bai L, Zhang X, Wang H, Wang J, Bao D, Li M, Liu X, Zhang S. Chem Rev, 2017, 117: 9625–9673CrossRefGoogle Scholar
  32. 14.
    Zhao H, Lu B, Li X, Zhang W, Zhao J, Cai Q. J CO2 Util, 2015, 12: 49–53CrossRefGoogle Scholar
  33. 15.
    Kimura T, Kamata K, Mizuno N. Angew Chem Int Ed, 2012, 51: 6700–6703CrossRefGoogle Scholar
  34. 16.
    Chen A, Chen C, Xiu Y, Liu X, Chen J, Guo L, Zhang R, Hou Z. Green Chem, 2015, 17: 1842–1852CrossRefGoogle Scholar
  35. 17.
    Lee JK, Kim YJ, Choi YS, Lee H, Lee JS, Hong J, Jeong EK, Kim HS, Cheong M. Appl Catal B-Environ, 2012, 111-112: 621–627CrossRefGoogle Scholar
  36. 18.
    Lu W, Ma J, Hu J, Song J, Zhang Z, Yang G, Han B. Green Chem, 2014, 16: 221–225CrossRefGoogle Scholar
  37. 19.
    Zhu X, Wang Y, Li H. Phys Chem Chem Phys, 2011, 13: 17445–17448CrossRefGoogle Scholar
  38. 20.
    Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J. Angew Chem Int Ed, 2004, 43: 2415–2417CrossRefGoogle Scholar
  39. 21.
    Wu F, Dou XY, He LN, Miao CX. Lett Org Chem, 2010, 7: 73–78CrossRefGoogle Scholar
  40. 22.
    Cui G, Zheng J, Luo X, Lin W, Ding F, Li H, Wang C. Angew Chem Int Ed, 2013, 52: 10620–10624CrossRefGoogle Scholar
  41. 23.
    Wang C, Luo H, Jiang D, Li H, Dai S. Angew Chem Int Ed, 2010, 49: 5978–5981CrossRefGoogle Scholar
  42. 24.
    Zhao Y, Yu B, Yang Z, Zhang H, Hao L, Gao X, Liu Z. Angew Chem Int Ed, 2014, 53: 5922–5925CrossRefGoogle Scholar
  43. 25.
    Bordwell FG, Algrim D. J Org Chem, 1976, 41: 2507–2508CrossRefGoogle Scholar
  44. 26.
    Bordwell FG, McCallum RJ, Olmstead WN. J Org Chem, 1984, 49: 1424–1427CrossRefGoogle Scholar
  45. 27.
    Bordwell FG. Acc Chem Res, 1988, 21: 456–463CrossRefGoogle Scholar
  46. 28.
    Hu J, Ma J, Zhang Z, Zhu Q, Zhou H, Lu W, Han B. Green Chem, 2015, 17: 1219–1225CrossRefGoogle Scholar
  47. 29.
    Cui G, Lin W, Ding F, Luo X, He X, Li H, Wang C. Green Chem, 2014, 16: 1211–1216CrossRefGoogle Scholar
  48. 30.
    Hu J, Ma J, Zhu Q, Zhang Z, Wu C, Han B. Angew Chem Int Ed, 2015, 54: 5399–5403CrossRefGoogle Scholar
  49. 31.
    Huang Y, Cui G, Zhao Y, Wang H, Li Z, Dai S, Wang J. Angew Chem Int Ed, 2017, 56: 13293–13297CrossRefGoogle Scholar
  50. 32.
    Wang C, Luo X, Zhu X, Cui G, Jiang D, Deng D, Li H, Dai S. RSC Adv, 2013, 3: 15518–15527CrossRefGoogle Scholar
  51. 33.
    Li W, Cheng W, Yang X, Su Q, Dong L, Zhang P, Yi Y, Li B, Zhang S. Chin J Chem, 2018, 36: 293–298CrossRefGoogle Scholar
  52. 34.
    Yue C, Su D, Zhang X, Wu W, Xiao L. Catal Lett, 2014, 144: 1313–1321CrossRefGoogle Scholar
  53. 35.
    Yang ZZ, Zhao YN, He LN, Gao J, Yin ZS. Green Chem, 2012, 14: 519–527CrossRefGoogle Scholar
  54. 36.
    Sadeghzadeh SM. Catal Commun, 2015, 72: 91–96CrossRefGoogle Scholar
  55. 37.
    Yang H, Wang X, Ma Y, Wang L, Zhang J. Catal Sci Technol, 2016, 6: 7773–7782CrossRefGoogle Scholar
  56. 38(a).
    Schaffner B, Schaffner F, Verevkin SP, Borner A. Chem Rev, 2010, 110: 4554–4581CrossRefGoogle Scholar
  57. 38(b).
    Xu K. Chem Rev, 2004, 104: 4303–4418CrossRefGoogle Scholar
  58. 39.
    Yang C, Liu M, Zhang J, Wang X, Jiang Y, Sun J. Mol Catal, 2018, 450: 39–45CrossRefGoogle Scholar
  59. 40.
    Galvan M, Selva M, Perosa A, Noè M. Asian J Org Chem, 2014, 3: 504–513CrossRefGoogle Scholar
  60. 41.
    Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T. Org Lett, 2010, 12: 5728–5731CrossRefGoogle Scholar
  61. 42.
    Liu M, Liang L, Li X, Gao X, Sun J. Green Chem, 2016, 18: 2851–2863CrossRefGoogle Scholar
  62. 43.
    Kumar P, Varyani M, Khatri PK, Paul S, Jain SL. J Ind Eng Chem, 2017, 49: 152–157CrossRefGoogle Scholar
  63. 44.
    Yue S, Hao XJ, Wang PP, Li J. Mol Catal, 2017, 433: 420–429CrossRefGoogle Scholar
  64. 45.
    Yuan G, Zhao Y, Wu Y, Li R, Chen Y, Xu D, Liu Z. Sci China Chem, 2017, 60: 958–963CrossRefGoogle Scholar
  65. 46.
    Roshan KR, Jose T, Kim D, Cherian KA, Park DW. Catal Sci Technol, 2014, 4: 963–970CrossRefGoogle Scholar
  66. 47.
    Dai WL, Jin B, Luo SL, Luo XB, Tu XM, Au CT. J Mol Catal AChem, 2013, 378: 326–332CrossRefGoogle Scholar
  67. 48.
    Zhang Z, Fan F, Xing H, Yang Q, Bao Z, Ren Q. ACS Sustain Chem Eng, 2017, 5: 2841–2846CrossRefGoogle Scholar
  68. 49.
    Chen C, Ma Y, Zheng D, Wang L, Li J, Zhang J, He H, Zhang S. J CO2 Util, 2017, 18: 156–163CrossRefGoogle Scholar
  69. 50.
    Yue S, Wang P, Hao X, Zang S. J CO2 Util, 2017, 21: 238–246CrossRefGoogle Scholar
  70. 51.
    Hu J, Ma J, Liu H, Qian Q, Xie C, Han B. Green Chem, 2018, 20: 2990–2994CrossRefGoogle Scholar
  71. 52.
    Hajipour AR, Heidari Y, Kozehgary G. RSC Adv, 2015, 5: 22373–22379CrossRefGoogle Scholar
  72. 53.
    Dai WL, Chen L, Yin SF, Li WH, Zhang YY, Luo SL, Au CT. Catal Lett, 2010, 137: 74–80CrossRefGoogle Scholar
  73. 54.
    Liu M, Lan J, Liang L, Sun J, Arai M. J Catal, 2017, 347: 138–147CrossRefGoogle Scholar
  74. 55(a).
    Gu Y, Shi F, Deng Y. J Org Chem, 2004, 69: 391–394CrossRefGoogle Scholar
  75. 55(b).
    Kayaki Y, Yamamoto M, Ikariya T. J Org Chem, 2007, 72: 647–649CrossRefGoogle Scholar
  76. 56.
    Yamada W, Sugawara Y, Cheng HM, Ikeno T, Yamada T. Eur J Org Chem, 2007, 2007(16): 2604–2607CrossRefGoogle Scholar
  77. 57.
    Hu J, Ma J, Lu L, Qian Q, Zhang Z, Xie C, Han B. ChemSusChem, 2017, 10: 1292–1297CrossRefGoogle Scholar
  78. 58.
    Chen K, Shi G, Dao R, Mei K, Zhou X, Li H, Wang C. Chem Commun, 2016, 52: 7830–7833CrossRefGoogle Scholar
  79. 59.
    Qiu J, Zhao Y, Li Z, Wang H, Fan M, Wang J. ChemSusChem, 2017, 10: 1120–1127CrossRefGoogle Scholar
  80. 60.
    Zhao Y, Wu Y, Yuan G, Hao L, Gao X, Yang Z, Yu B, Zhang H, Liu Z. Chem Asian J, 2016, 11: 2735–2740CrossRefGoogle Scholar
  81. 61.
    Wu Y, Zhao Y, Li R, Yu B, Chen Y, Liu X, Wu C, Luo X, Liu Z. ACS Catal, 2017, 7: 6251–6255CrossRefGoogle Scholar
  82. 62.
    Huang S, Yan B, Wang S, Ma X. Chem Soc Rev, 2015, 44: 3079–3116CrossRefGoogle Scholar
  83. 63.
    Sun J, Lu B, Wang X, Li X, Zhao J, Cai Q. Fuel Process Technol, 2013, 115: 233–237CrossRefGoogle Scholar
  84. 64.
    Zhang Q, Zhao H, Lu B, Zhao J, Cai Q. J Mol Catal A-Chem, 2016, 421: 117–121CrossRefGoogle Scholar
  85. 65.
    Eta V, Mäki-Arvela P, Salminen E, Salmi T, Murzin DY, Mikkola JP. Catal Lett, 2011, 141: 1254–1261CrossRefGoogle Scholar
  86. 66.
    Li J, Wang L, Shi F, Liu S, He Y, Lu L, Ma X, Deng Y. Catal Lett, 2011, 141: 339–346CrossRefGoogle Scholar
  87. 67.
    Goodrich P, Gunaratne HQN, Jin L, Lei Y, Seddon KR. Aust J Chem, 2018, 71: 181–185CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials ScienceTianjin University of Science and TechnologyTianjinChina
  2. 2.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations