Melanin/polydopamine-based nanomaterials for biomedical applications

  • Chao Qi
  • Lian-Hua Fu
  • Han Xu
  • Tian-Fu Wang
  • Jing Lin
  • Peng HuangEmail author


The natural melanin is one kind of ubiquitous biological pigments, which is produced in melanosomes and widely distributed in living organisms. The synthetic melanin, often known as polydopamine (PDA), has similar chemical compositions and physical properties to natural melanin. In recent years, both natural melanin and PDA have aroused increased research interests in biomedical fields owing to their inherent biocompatibility, antioxidant activity, free-radical scavenging, metal ion chelation, strong near-infrared absorption and high photothermal conversion efficiency. Inspired by these fascinating properties, melanin and PDA have been widely used as building blocks for the construction of multifunctional nanoplatforms for various biomedical applications. This review focuses on the state-of-the-art progress in melanin/PDA-based nanomaterials, which covers from their preparation methods to biomedical applications including bioimaging, treatment, theranostics, antibacterial, UV/radiation protection, biosensor and tissue engineering. Moreover, the current trends and the future prospects of melanin/PDA-based nanomaterials are also discussed.


melanin polydopamine nanomaterials biomedical applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51802202, 51703132, 51573096, 21807074), the Postdoctoral Science Foundation of China (2017M612727, 2018M633123), the National Postdoctoral Program for Innovative Talents (BX201600111), the Guangdong Province Natural Science Foundation of PhD Start-up Fund (2018A030310566, 2018A030310574), and the Basic Research Program of Shenzhen (JCYJ20170412111100742, JCYJ20160422091238319).


  1. 1.
    Chou LYT, Zagorovsky K, Chan WCW. Nat Nanotech, 2014, 9: 148–155CrossRefGoogle Scholar
  2. 2.
    Ohta S, Glancy D, Chan WCW. Science, 2016, 351: 841–845CrossRefPubMedGoogle Scholar
  3. 3.
    Sun M, Xu L, Ma W, Wu X, Kuang H, Wang L, Xu C. Adv Mater, 2016, 28: 898–904CrossRefPubMedGoogle Scholar
  4. 4.
    Nikitin MP, Zdobnova TA, Lukash SV, Stremovskiy OA, Deyev SM. Proc Natl Acad Sci USA, 2010, 107: 5827–5832CrossRefPubMedGoogle Scholar
  5. 5.
    Ge J, Lei J, Zare RN. Nat Nanotech, 2012, 7: 428–432CrossRefGoogle Scholar
  6. 6.
    Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R, Niu G, Liu G, Chen X. ACS Nano, 2016, 10: 3453–3460CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yang T, Wang Y, Ke H, Wang Q, Lv X, Wu H, Tang Y, Yang X, Chen C, Zhao Y, Chen H. Adv Mater, 2016, 28: 5923–5930CrossRefPubMedGoogle Scholar
  8. 8.
    Lee H, Dellatore SM, Miller WM, Messersmith PB. Science, 2007, 318: 426–430CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu Y, Ai K, Lu L. Chem Rev, 2014, 114: 5057–5115CrossRefPubMedGoogle Scholar
  10. 10.
    Solano F. Int J Mol Sci, 2017, 18: 1561CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lampel A, McPhee SA, Park HA, Scott GG, Humagain S, Hekstra DR, Yoo B, Frederix PWJM, Li TD, Abzalimov RR, Greenbaum SG, Tuttle T, Hu C, Bettinger CJ, Ulijn RV. Science, 2017, 356: 1064–1068CrossRefPubMedGoogle Scholar
  12. 12.
    d’Ischia M, Wakamatsu K, Cicoira F, Di Mauro E, Garcia-Borron JC, Commo S, Galván I, Ghanem G, Kenzo K, Meredith P, Pezzella A, Santato C, Sarna T, Simon JD, Zecca L, Zucca FA, Napolitano A, Ito S. Pigment Cell Melanom Res, 2015, 28: 520–544CrossRefGoogle Scholar
  13. 13.
    Liu Y, Ai K, Ji X, Askhatova D, Du R, Lu L, Shi J. J Am Chem Soc, 2017, 139: 856–862CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, Savas JN, Kiskinis E, Zhuang X, Krüger R, Surmeier DJ, Krainc D. Science, 2017, 357: 1255–1261CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ju KY, Lee Y, Lee S, Park SB, Lee JK. Biomacromolecules, 2011, 12: 625–632CrossRefPubMedGoogle Scholar
  16. 16.
    Panzella L, Gentile G, D’Errico G, Della Vecchia NF, Errico ME, Napolitano A, Carfagna C, d’Ischia M. Angew Chem Int Ed, 2013, 52: 12684–12687CrossRefGoogle Scholar
  17. 17.
    Longo DL, Stefania R, Aime S, Oraevsky A. Int J Mol Sci, 2017, 18: 1719CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Adv Mater, 2013, 25: 1353–1359CrossRefPubMedGoogle Scholar
  19. 19.
    Ju KY, Kang J, Pyo J, Lim J, Chang JH, Lee JK. Nanoscale, 2016, 8: 14448–14456CrossRefPubMedGoogle Scholar
  20. 20.
    Shi Y, Liu M, Deng F, Zeng G, Wan Q, Zhang X, Wei Y. J Mater Chem B, 2017, 5: 194–206CrossRefGoogle Scholar
  21. 21.
    Cho S, Park W, Kim DH. ACS Appl Mater Interfaces, 2017, 9: 101–111CrossRefPubMedGoogle Scholar
  22. 22.
    Hong SH, Sun Y, Tang C, Cheng K, Zhang R, Fan Q, Xu L, Huang D, Zhao A, Cheng Z. Bioconj Chem, 2017, 28: 1925–1930CrossRefGoogle Scholar
  23. 23.
    Fan Q, Cheng K, Hu X, Ma X, Zhang R, Yang M, Lu X, Xing L, Huang W, Gambhir SS, Cheng Z. J Am Chem Soc, 2014, 136: 15185–15194CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ju KY, Lee JW, Im GH, Lee S, Pyo J, Park SB, Lee JH, Lee JK. Biomacromolecules, 2013, 14: 3491–3497CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang R, Fan Q, Yang M, Cheng K, Lu X, Zhang L, Huang W, Cheng Z. Adv Mater, 2015, 27: 5063–5069CrossRefPubMedGoogle Scholar
  26. 26.
    Araújo M, Viveiros R, Correia TR, Correia IJ, Bonifácio VDB, Casimiro T, Aguiar-Ricardo A. Int J Pharm, 2014, 469: 140–145CrossRefPubMedGoogle Scholar
  27. 27.
    Lynge ME, van der Westen R, Postma A, Chem Eur J, 2014, 20: 499–504CrossRefPubMedGoogle Scholar
  28. 28.
    Lynge ME, van der Westen R, Postma A, Städler B. Nanoscale, 2011, 3: 4916–4928CrossRefPubMedGoogle Scholar
  29. 29.
    Yang HC, Waldman RZ, Wu MB, Hou J, Chen L, Darling SB, Xu ZK. Adv Funct Mater, 2018, 28: 1705327CrossRefGoogle Scholar
  30. 30.
    Liu X, Cao J, Li H, Li J, Jin Q, Ren K, Ji J. ACS Nano, 2013, 7: 9384–9395CrossRefPubMedGoogle Scholar
  31. 31.
    Lin LS, Cong ZX, Cao JB, Ke KM, Peng QL, Gao J, Yang HH, Liu G, Chen X. ACS Nano, 2014, 8: 3876–3883CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yang SH, Kang SM, Lee KB, Chung TD, Lee H, Choi IS. J Am Chem Soc, 2011, 133: 2795–2797CrossRefPubMedGoogle Scholar
  33. 33.
    Lee H, Rho J, Messersmith PB. Adv Mater, 2009, 21: 431–434CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Huang Q, Liu M, Chen J, Wan Q, Tian J, Huang L, Jiang R, Wen Y, Zhang X, Wei Y. Appl Surf Sci, 2017, 419: 35–44CrossRefGoogle Scholar
  35. 35.
    Zhang X, Huang Q, Liu M, Tian J, Zeng G, Li Z, Wang K, Zhang Q, Wan Q, Deng F, Wei Y. Appl Surf Sci, 2015, 343: 19–27CrossRefGoogle Scholar
  36. 36.
    Huang Q, Liu M, Mao L, Xu D, Zeng G, Huang H, Jiang R, Deng F, Zhang X, Wei Y. J Colloid Interface Sci, 2017, 499: 170–179CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang J, Zhang L, Cui X, Gong L, Xiang L, Shi C, Hu W, Zeng H. Chem Commun, 2018, 54: 9734–9737CrossRefGoogle Scholar
  38. 38.
    Zhang X, Huang Q, Deng F, Huang H, Wan Q, Liu M, Wei Y. Appl Mater Today, 2017, 7: 222–238CrossRefGoogle Scholar
  39. 39.
    Wang C, Sun L, Zhang F, Wang X, Sun Q, Cheng Y, Wang L. Small, 2017, 13: 1701246CrossRefGoogle Scholar
  40. 40.
    Qu K, Zheng Y, Jiao Y, Zhang X, Dai S, Qiao SZ. Adv Energy Mater, 2017, 7: 1602068CrossRefGoogle Scholar
  41. 41.
    d'Ischia M, Napolitano A, Pezzella A, Meredith P, Sarna T. Angew Chem Int Ed, 2009, 48: 3914–3921CrossRefGoogle Scholar
  42. 42.
    Watt AAR, Bothma JP, Meredith P. Soft Matter, 2009, 5: 3754–3760CrossRefGoogle Scholar
  43. 43.
    d’Ischia M, Napolitano A, Ball V, Chen CT, Buehler MJ. Acc Chem Res, 2014, 47: 3541–3550CrossRefPubMedGoogle Scholar
  44. 44.
    Napolitano A, Panzella L, Leone L, d’Ischia M. Acc Chem Res, 2013, 46: 519–528CrossRefPubMedGoogle Scholar
  45. 45.
    Simon JD, Peles DN. Acc Chem Res, 2010, 43: 1452–1460CrossRefPubMedGoogle Scholar
  46. 46.
    Ho CC, Ding SJ. J Biomed Nanotechnol, 2014, 10: 3063–3084CrossRefPubMedGoogle Scholar
  47. 47.
    Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW. Langmuir, 2012, 28: 6428–6435CrossRefPubMedGoogle Scholar
  48. 48.
    Huang L, Liu M, Huang H, Wen Y, Zhang X, Wei Y. Biomacromolecules, 2018, 19: 1858–1868CrossRefPubMedGoogle Scholar
  49. 49.
    Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y. Nanoscale, 2016, 8: 16819–16840CrossRefPubMedGoogle Scholar
  50. 50.
    Chu M, Hai W, Zhang Z, Wo F, Wu Q, Zhang Z, Shao Y, Zhang D, Jin L, Shi D. Biomaterials, 2016, 91: 182–199CrossRefPubMedGoogle Scholar
  51. 51.
    Kiran GS, Dhasayan A, Lipton AN, Selvin J, Arasu MV, Al-Dhabi NA. J Nanobiotechnol, 2014, 12: 18CrossRefGoogle Scholar
  52. 52.
    Kiran GS, Jackson SA, Priyadharsini S, Dobson ADW, Selvin J. Sci Rep, 2017, 7: 9167CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    della Vecchia NF, Cerruti P, Gentile G, Errico ME, Ambrogi V, D'Errico G, Longobardi S, Napolitano A, Paduano L, Carfagna C, d’Ischia M. Biomacromolecules, 2014, 15: 3811–3816CrossRefPubMedGoogle Scholar
  54. 54.
    Strube OI, Büngeler A, Bremser W. Biomacromolecules, 2015, 16: 1608–1613CrossRefPubMedGoogle Scholar
  55. 55.
    Strube OI, Büngeler A, Bremser W. Macromol Mater Eng, 2016, 301: 801–804CrossRefGoogle Scholar
  56. 56.
    Hong S, Na YS, Choi S, Song IT, Kim WY, Lee H. Adv Funct Mater, 2012, 22: 4711–4717CrossRefGoogle Scholar
  57. 57.
    Arzillo M, Mangiapia G, Pezzella A, Heenan RK, Radulescu A, Paduano L, d’Ischia M. Biomacromolecules, 2012, 13: 2379–2390CrossRefPubMedGoogle Scholar
  58. 58.
    Apte M, Girme G, Bankar A, Ravikumar A, Zinjarde S. J Nanobiotechnol, 2013, 11: 2CrossRefGoogle Scholar
  59. 59.
    Wei F, Liu J, Zhu YN, Wang XS, Cao CY, Song WG. Sci China Chem, 2017, 60: 1236–1242CrossRefGoogle Scholar
  60. 60.
    Lin J, Wang M, Hu H, Yang X, Wen B, Wang Z, Jacobson O, Song J, Zhang G, Niu G, Huang P, Chen X. Adv Mater, 2016, 28: 3273–3279CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dong Z, Feng L, Hao Y, Chen M, Gao M, Chao Y, Zhao H, Zhu W, Liu J, Liang C, Zhang Q, Liu Z. J Am Chem Soc, 2018, 140: 2165–2178CrossRefPubMedGoogle Scholar
  62. 62.
    Klosterman L, Ahmad Z, Viswanathan V, Bettinger CJ. Adv Mater Interfaces, 2017, 4: 1700041CrossRefGoogle Scholar
  63. 63.
    Panzella L, Melone L, Pezzella A, Rossi B, Pastori N, Perfetti M, D'Errico G, Punta C, d’Ischia M. Biomacromolecules, 2016, 17: 564–571CrossRefPubMedGoogle Scholar
  64. 64.
    Neto AI, Cibrão AC, Correia CR, Carvalho RR, Luz GM, Ferrer GG, Botelho G, Picart C, Alves NM, Mano JF. Small, 2014, 10: 2459–2469CrossRefPubMedGoogle Scholar
  65. 65.
    Zhou J, Xiong Q, Ma J, Ren J, Messersmith PB, Chen P, Duan H. ACS Nano, 2016, 10: 11066–11075CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zheng J, Lin Z, Zhang L, Yang H. Sci China Chem, 2015, 58: 1056–1064CrossRefGoogle Scholar
  67. 67.
    Liu Q, Jia J, Yang T, Fan Q, Wang L, Ma G. Small, 2016, 12: 1744–1757CrossRefPubMedGoogle Scholar
  68. 68.
    Mazur M, Barras A, Kuncser V, Galatanu A, Zaitzev V, Turcheniuk KV, Woisel P, Lyskawa J, Laure W, Siriwardena A, Boukherroub R, Szunerits S. Nanoscale, 2013, 5: 2692–2702CrossRefPubMedGoogle Scholar
  69. 69.
    Ma H, Luo J, Sun Z, Xia L, Shi M, Liu M, Chang J, Wu C. Biomaterials, 2016, 111: 138–148CrossRefPubMedGoogle Scholar
  70. 70.
    Qu K, Wang J, Ren J, Qu X. Chem Eur J, 2013, 19: 7243–7249CrossRefPubMedGoogle Scholar
  71. 71.
    Hu C, Liu Y, Chen J, He Q, Gao H. J Colloid Interface Sci, 2016, 480: 85–90CrossRefPubMedGoogle Scholar
  72. 72.
    Xiao W, Li Y, Hu C, Huang Y, He Q, Gao H. J Colloid Interface Sci, 2017, 497: 226–232CrossRefPubMedGoogle Scholar
  73. 73.
    Park JY, Back SH, Chang SJ, Lee SJ, Lee KG, Park TJ. ACS Appl Mater Interfaces, 2015, 7: 15633–15640CrossRefPubMedGoogle Scholar
  74. 74.
    Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S. Angew Chem Int Ed, 2011, 50: 6799–6802CrossRefGoogle Scholar
  75. 75.
    Zhang X, Wang S, Xu L, Feng L, Ji Y, Tao L, Li S, Wei Y. Nanoscale, 2012, 4: 5581–5584CrossRefPubMedGoogle Scholar
  76. 76.
    Shi Y, Jiang R, Liu M, Fu L, Zeng G, Wan Q, Mao L, Deng F, Zhang X, Wei Y. Mater Sci Eng-C, 2017, 77: 972–977CrossRefGoogle Scholar
  77. 77.
    Repenko T, Rix A, Nedilko A, Rose J, Hermann A, Vinokur R, Moli S, Cao-Milàn R, Mayer M, von Plessen G, Fery A, De Laporte L, Lederle W, Chigrin DN, Kuehne AJC. Adv Funct Mater, 2018, 28: 1705607CrossRefGoogle Scholar
  78. 78.
    Wang Z, Carniato F, Xie Y, Huang Y, Li Y, He S, Zang N, Rinehart JD, Botta M, Gianneschi NC. Small, 2017, 13: 1701830CrossRefGoogle Scholar
  79. 79.
    Cai WW, Wang LJ, Li SJ, Zhang XP, Li TT, Wang YH, Yang X, Xie J, Li JD, Liu SJ, Xu W, He S, Cheng Z, Fan QL, Zhang RP. J Biomed Mater Res, 2017, 105: 131–137CrossRefGoogle Scholar
  80. 80.
    Jung HS, Cho KJ, Seol Y, Takagi Y, Dittmore A, Roche PA, Neuman KC. Adv Funct Mater, 2018, 28: 1801252CrossRefGoogle Scholar
  81. 81.
    Yang M, Fan Q, Zhang R, Cheng K, Yan J, Pan D, Ma X, Lu A, Cheng Z. Biomaterials, 2015, 69: 30–37CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ju KY, Lee S, Pyo J, Choo J, Lee JK. Small, 2015, 11: 84–89CrossRefPubMedGoogle Scholar
  83. 83.
    Liopo A, Su R, Oraevsky AA. Photoacoustics, 2015, 3: 35–43CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Li Y, Xie Y, Wang Z, Zang N, Carniato F, Huang Y, Andolina CM, Parent LR, Ditri TB, Walter ED, Botta M, Rinehart JD, Gianneschi NC. ACS Nano, 2016, 10: 10186–10194CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kayatz P, Thumann G, Luther TT, Jordan JF, Bartz-Schmidt KU, Esser PJ, Schraermeyer U. Invest Ophth Vis Sci, 2001, 42: 241–246Google Scholar
  86. 86.
    Quignard S, d’Ischia M, Chen Y, Fattaccioli J. ChemPlusChem, 2014, 79: 1254–1257CrossRefGoogle Scholar
  87. 87.
    Yan J, Ji Y, Zhang P, Lu X, Fan Q, Pan D, Yang R, Xu Y, Wang L, Zhang L, Yang M. J Mater Chem B, 2016, 4: 7233–7240CrossRefGoogle Scholar
  88. 88.
    Zhang P, Yue Y, Pan D, Yang R, Xu Y, Wang L, Yan J, Li X, Yang M. Nucl Med Biol, 2016, 43: 529–533CrossRefPubMedGoogle Scholar
  89. 89.
    Ye Y, Wang C, Zhang X, Hu Q, Zhang Y, Liu Q, Wen D, Milligan J, Bellotti A, Huang L, Dotti G, Gu Z. Sci Immunol, 2017, 2: eaan5692CrossRefPubMedGoogle Scholar
  90. 90.
    Bao X, Zhao J, Sun J, et al. ACS Nano, 2018Google Scholar
  91. 91.
    Mellman I, Coukos G, Dranoff G. Nature, 2011, 480: 480–489CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kim M, Kim HS, Kim MA, Ryu H, Jeong HJ, Lee CM. Macromol Biosci, 2017, 17: 1600371Google Scholar
  93. 93.
    Li J, Qiu L, Xie S, Zhang J, Zhang L, Liu H, Li J, Zhang X, Tan W. Sci China Chem, 2018, 61: 497–504CrossRefPubMedGoogle Scholar
  94. 94.
    Marszałł MP, Buciński A, Goryński K, Proszowska A, Kaliszan R. J Chromatogr A, 2011, 1218: 229–236CrossRefPubMedGoogle Scholar
  95. 95.
    Sheng W, Li W, Zhang G, Tong Y, Liu Z, Jia X. New J Chem, 2015, 39: 2752–2757CrossRefGoogle Scholar
  96. 96.
    Qi C, Lin J, Fu LH, Huang P. Chem Soc Rev, 2018, 47: 357–403CrossRefPubMedGoogle Scholar
  97. 97.
    Chen W, Qin M, Chen X, Wang Q, Zhang Z, Sun X. Theranostics, 2018, 8: 2229–2241CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Chen W, Wang Y, Qin M, Zhang X, Zhang Z, Sun X, Gu Z. ACS Nano, 2018, 12: 5995–6005CrossRefGoogle Scholar
  99. 99.
    Gao Y, Wu X, Zhou L, Su Y, Dong CM. Macromol Rapid Commun, 2015, 36: 916–922CrossRefPubMedGoogle Scholar
  100. 100.
    Wu X, Zhou L, Su Y, Dong CM. Polym Chem, 2016, 7: 5552–5562CrossRefGoogle Scholar
  101. 101.
    Zhang C, Zhao X, Guo S, Lin T, Guo H. Int J Nanomed, 2017, 12: 1827–1840CrossRefGoogle Scholar
  102. 102.
    Wang X, Zhang J, Wang Y, Wang C, Xiao J, Zhang Q, Cheng Y. Biomaterials, 2016, 81: 114–124CrossRefPubMedGoogle Scholar
  103. 103.
    Wu Q, Niu M, Chen X, Tan L, Fu C, Ren X, Ren J, Li L, Xu K, Zhong H, Meng X. Biomaterials, 2018, 162: 132–143CrossRefPubMedGoogle Scholar
  104. 104.
    Li M, Sun X, Zhang N, Wang W, Yang Y, Jia H, Liu W. Adv Sci, 2018, 5: 1800155CrossRefGoogle Scholar
  105. 105.
    Liu S, Pan J, Liu J, Ma Y, Qiu F, Mei L, Zeng X, Pan G. Small, 2018, 14: 1703968CrossRefGoogle Scholar
  106. 106.
    Wang Y, Wei G, Zhang X, Huang X, Zhao J, Guo X, Zhou S. Small, 2018, 14: 1702994CrossRefGoogle Scholar
  107. 107.
    Cheng W, Nie J, Gao N, Liu G, Tao W, Xiao X, Jiang L, Liu Z, Zeng X, Mei L. Adv Funct Mater, 2017, 27: 1704135CrossRefGoogle Scholar
  108. 108.
    Zhang D, Wu M, Zeng Y, Wu L, Wang Q, Han X, Liu X, Liu J. ACS Appl Mater Interfaces, 2015, 7: 8176–8187CrossRefPubMedGoogle Scholar
  109. 109.
    Han J, Park W, Park S, Na K. ACS Appl Mater Interfaces, 2016, 8: 7739–7747CrossRefPubMedGoogle Scholar
  110. 110.
    Liu WL, Liu T, Zou MZ, Yu WY, Li CX, He ZY, Zhang MK, Liu MD, Li ZH, Feng J, Zhang XZ. Adv Mater, 2018, 30: 1802006CrossRefGoogle Scholar
  111. 111.
    Jiang Q, Luo Z, Men Y, Yang P, Peng H, Guo R, Tian Y, Pang Z, Yang W. Biomaterials, 2017, 143: 29–45CrossRefPubMedGoogle Scholar
  112. 112.
    Li Y, Jiang C, Zhang D, Wang Y, Ren X, Ai K, Chen X, Lu L. Acta Biomater, 2017, 47: 124–134CrossRefPubMedGoogle Scholar
  113. 113.
    Zhang M, Zhang L, Chen Y, Li L, Su Z, Wang C. Chem Sci, 2017, 8: 8067–8077CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Yi X, Chen L, Chen J, Maiti D, Chai Z, Liu Z, Yang K. Adv Funct Mater, 2018, 28: 1705161CrossRefGoogle Scholar
  115. 115.
    Miao ZH, Wang H, Yang H, Li ZL, Zhen L, Xu CY. ACS Appl Mater Interfaces, 2015, 7: 16946–16952CrossRefPubMedGoogle Scholar
  116. 116.
    Yang Z, Ren J, Ye Z, Zhu W, Xiao L, Zhang L, He Q, Xu Z, Xu H. J Mater Chem B, 2017, 5: 1108–1116CrossRefGoogle Scholar
  117. 117.
    Wu M, Wang Q, Zhang D, Liao N, Wu L, Huang A, Liu X. Colloids Surfs B-Biointerfaces, 2016, 141: 467–475CrossRefGoogle Scholar
  118. 118.
    Cheng Y, Zhang S, Kang N, Huang J, Lv X, Wen K, Ye S, Chen Z, Zhou X, Ren L. ACS Appl Mater Interfaces, 2017, 9: 19296–19306CrossRefPubMedGoogle Scholar
  119. 119.
    Ding X, Liu J, Li J, Wang F, Wang Y, Song S, Zhang H. Chem Sci, 2016, 7: 6695–6700CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Liu J, Jin L, Wang Y, Ding X, Zhang S, Song S, Wang D, Zhang H. Small, 2018, 14: 1702431CrossRefGoogle Scholar
  121. 121.
    Stritzker J, Kirscher L, Scadeng M, Deliolanis NC, Morscher S, Symvoulidis P, Schaefer K, Zhang Q, Buckel L, Hess M, Donat U, Bradley WG, Ntziachristos V, Szalay AA. Proc Natl Acad Sci USA, 2013, 110: 3316–3320CrossRefPubMedGoogle Scholar
  122. 122.
    Zhang L, Sheng D, Wang D, Yao Y, Yang K, Wang Z, Deng L, Chen Y. Theranostics, 2018, 8: 1591–1606CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Liu H, Chu C, Liu Y, Pang X, Wu Y, Zhou Z, Zhang P, Zhang W, Liu G, Chen X. Adv Sci, 2018, 5: 1800032CrossRefGoogle Scholar
  124. 124.
    Hu D, Liu C, Song L, Cui H, Gao G, Liu P, Sheng Z, Cai L. Nanoscale, 2016, 8: 17150–17158CrossRefPubMedGoogle Scholar
  125. 125.
    Wang S, Lin J, Wang Z, Zhou Z, Bai R, Lu N, Liu Y, Fu X, Jacobson O, Fan W, Qu J, Chen S, Wang T, Huang P, Chen X. Adv Mater, 2017, 29: 1701013CrossRefGoogle Scholar
  126. 126.
    Chen YW, Peng YK, Chou SW, Tseng YJ, Wu PC, Wang SK, Lee YW, Shyue JJ, Hsiao JK, Liu TM, Chou PT. Part Part Syst Charact, 2017, 34: 1600415CrossRefGoogle Scholar
  127. 127.
    Yoon YI, Ju KY, Cho HS, Yu KN, Lee JJ, Ahn GJ, Lee SH, Cho MH, Lee HJ, Lee JK, Yoon TJ. Chem Commun, 2015, 51: 9455–9458CrossRefGoogle Scholar
  128. 128.
    Liu D, Ma L, Liu L, Wang L, Liu Y, Jia Q, Guo Q, Zhang G, Zhou J. ACS Appl Mater Interfaces, 2016, 8: 24455–24462CrossRefPubMedGoogle Scholar
  129. 129.
    Hadjesfandiari N, Weinhart M, Kizhakkedathu JN, Haag R, Brooks DE. Adv Healthcare Mater, 2018, 7: 1700839CrossRefGoogle Scholar
  130. 130.
    El-Batal AI, El-Sayyad GS, El-Ghamry A, Agaypi KM, Elsayed MA, Gobara M. J Photochem Photobiol B-Biol, 2017, 173: 120–139CrossRefGoogle Scholar
  131. 131.
    Pezzella A, Capelli L, Costantini A, Luciani G, Tescione F, Silvestri B, Vitiello G, Branda F. Mater Sci Eng-C, 2013, 33: 347–355CrossRefGoogle Scholar
  132. 132.
    Vitiello G, Pezzella A, Zanfardino A, Varcamonti M, Silvestri B, Costantini A, Branda F, Luciani G. J Mater Chem B, 2015, 3: 2808–2815CrossRefGoogle Scholar
  133. 133.
    Vitiello G, Pezzella A, Zanfardino A, Silvestri B, Giudicianni P, Costantini A, Varcamonti M, Branda F, Luciani G. Mater Sci Eng-C, 2017, 75: 454–462CrossRefGoogle Scholar
  134. 134.
    Black KCL, Sileika TS, Yi J, Zhang R, Rivera JG, Messersmith PB. Small, 2014, 10: 169–178CrossRefPubMedGoogle Scholar
  135. 135.
    Brenner M, Hearing VJ. Photochem Photobiol, 2008, 84: 539–549CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Rageh MM, El-Gebaly RH, Abou-Shady H, Amin DG. Mol Cell Biochem, 2015, 399: 59–69CrossRefPubMedGoogle Scholar
  137. 137.
    Schweitzer AD, Revskaya E, Chu P, Pazo V, Friedman M, Nosanchuk JD, Cahill S, Frases S, Casadevall A, Dadachova E. Int J Radiat Oncol Biol Phys, 2010, 78: 1494–1502CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Wang Y, Li T, Ma P, Bai H, Xie Y, Chen M, Dong W. ACS Sustain Chem Eng, 2016, 4: 2252–2258CrossRefGoogle Scholar
  139. 139.
    Vij M, Grover R, Gotherwal V, Wani NA, Joshi P, Gautam H, Sharma K, Chandna S, Gokhale RS, Rai R, Ganguli M, Natarajan VT. Biomacromolecules, 2016, 17: 2912–2919CrossRefPubMedGoogle Scholar
  140. 140.
    Dadachova E, Bryan RA, Howell RC, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A. Pigment Cell Melanom Res, 2008, 21: 192–199CrossRefGoogle Scholar
  141. 141.
    Huang Y, Li Y, Hu Z, Yue X, Proetto MT, Jones Y, Gianneschi NC. ACS Cent Sci, 2017, 3: 564–569CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Wang C, Wang D, Dai T, Xu P, Wu P, Zou Y, Yang P, Hu J, Li Y, Cheng Y. Adv Funct Mater, 2018, 28: 1802127CrossRefGoogle Scholar
  143. 143.
    Wu Q, Fang A, Li H, Zhang Y, Yao S. Biosens Bioelectron, 2016, 77: 957–962CrossRefPubMedGoogle Scholar
  144. 144.
    Ao H, Qian Z, Zhu Y, Zhao M, Tang C, Huang Y, Feng H, Wang A. Biosens Bioelectron, 2016, 86: 542–547CrossRefPubMedGoogle Scholar
  145. 145.
    Chai L, Zhou J, Feng H, Tang C, Huang Y, Qian Z. ACS Appl Mater Interfaces, 2015, 7: 23564–23574CrossRefPubMedGoogle Scholar
  146. 146.
    Liu JW, Wang YM, Xu L, Duan LY, Tang H, Yu RQ, Jiang JH. Anal Chem, 2016, 88: 8355–8358CrossRefPubMedGoogle Scholar
  147. 147.
    Liu YM, Zhang JJ, Shi GF, Zhou M, Liu YY, Huang KJ, Chen YH. Electrochim Acta, 2014, 129: 222–228CrossRefGoogle Scholar
  148. 148.
    Wang HB, Zhang HD, Xu LL, Gan T, Huang KJ, Liu YM. J Solid State Electrochem, 2014, 18: 2435–2442CrossRefGoogle Scholar
  149. 149.
    Dong H, Liu Z, Zhong H, Yang H, Zhou Y, Hou Y, Long J, Lin J, Guo Z. Nanomaterials, 2017, 7: 70CrossRefPubMedCentralGoogle Scholar
  150. 150.
    Li J, Baird MA, Davis MA, Tai W, Zweifel LS, Adams Waldorf KM, Gale M, Rajagopal L, Pierce RH, Gao X. Nat Biomed Eng, 2017, 1: 0082CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Qian RC, Cao Y, Zhao LJ, Gu Z, Long YT. Angew Chem Int Ed, 2017, 56: 4802–4805CrossRefGoogle Scholar
  152. 152.
    Cai J, Huang J, Ge M, Iocozzia J, Lin Z, Zhang KQ, Lai Y. Small, 2017, 13: 1604240CrossRefGoogle Scholar
  153. 153.
    Clarke SJ, Hollmann CA, Zhang Z, Suffern D, Bradforth SE, Dimitrijevic NM, Minarik WG, Nadeau JL. Nat Mater, 2006, 5: 409–417CrossRefPubMedGoogle Scholar
  154. 154.
    Medintz IL, Stewart MH, Trammell SA, Susumu K, Delehanty JB, Mei BC, Melinger JS, Blanco-Canosa JB, Dawson PE, Mattoussi H. Nat Mater, 2010, 9: 676–684CrossRefPubMedGoogle Scholar
  155. 155.
    Wang D, Chen C, Ke X, Kang N, Shen Y, Liu Y, Zhou X, Wang H, Chen C, Ren L. ACS Appl Mater Interfaces, 2015, 7: 3030–3040CrossRefPubMedGoogle Scholar
  156. 156.
    Kumar S, Kumar A, Kim GH, Rhim WK, Hartman KL, Nam JM. Small, 2017, 13: 1701584CrossRefGoogle Scholar
  157. 157.
    Xiong B, Chen Y, Shu Y, Shen B, Chan HN, Chen Y, Zhou J, Wu H. Chem Commun, 2014, 50: 13578–13580CrossRefGoogle Scholar
  158. 158.
    Dutta Chowdhury A, Doong R. ACS Appl Mater Interfaces, 2016, 8: 21002–21010CrossRefPubMedGoogle Scholar
  159. 159.
    Jiang Y, Wang Z, Dai Z. ACS Appl Mater Interfaces, 2016, 8: 3644–3650CrossRefPubMedGoogle Scholar
  160. 160.
    Huang GS, Wang MT, Su CW, Chen YS, Hong MY. Biosens Bioelectron, 2007, 23: 319–325CrossRefPubMedGoogle Scholar
  161. 161.
    Manchineella S, Thrivikraman G, Khanum KK, Ramamurthy PC, Basu B, Govindaraju T. Adv Healthc Mater, 2016, 5: 1222–1232CrossRefPubMedGoogle Scholar
  162. 162.
    Han L, Zhang Y, Lu X, Wang K, Wang Z, Zhang H. ACS Appl Mater Interfaces, 2016, 8: 29088–29100CrossRefPubMedGoogle Scholar
  163. 163.
    Scognamiglio F, Travan A, Turco G, Borgogna M, Marsich E, Pasqua M, Paoletti S, Donati I. Colloids Surfs B-Biointerfaces, 2017, 155: 553–559CrossRefGoogle Scholar
  164. 164.
    Li M, Liu X, Xu Z, Yeung KWK, Wu S. ACS Appl Mater Interfaces, 2016, 8: 33972–33981CrossRefPubMedGoogle Scholar
  165. 165.
    Li J, Tan L, Liu X, Cui Z, Yang X, Yeung KWK, Chu PK, Wu S. ACS Nano, 2017, 11: 11250–11263CrossRefPubMedGoogle Scholar
  166. 166.
    Ding L, Zhu X, Wang Y, Shi B, Ling X, Chen H, Nan W, Barrett A, Guo Z, Tao W, Wu J, Shi X. Nano Lett, 2017, 17: 6790–6801CrossRefPubMedGoogle Scholar
  167. 167.
    Mrówczyński R, Bunge A, Liebscher J. Chem Eur J, 2014, 20: 8647–8653CrossRefPubMedGoogle Scholar
  168. 168.
    Fu LH, Qi C, Lin J, Huang P. Chem Soc Rev, 2018, 47: 6454–6472CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chao Qi
    • 1
  • Lian-Hua Fu
    • 1
    • 2
  • Han Xu
    • 1
  • Tian-Fu Wang
    • 1
  • Jing Lin
    • 1
  • Peng Huang
    • 1
    Email author
  1. 1.Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Carson International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science CenterShenzhen UniversityShenzhenChina
  2. 2.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations