Science China Chemistry

, Volume 62, Issue 4, pp 479–490 | Cite as

Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries

  • Yu Chen
  • Zhongcheng Liu
  • Meijin Lin
  • Qilang Lin
  • Bihai Tong
  • Dongyang ChenEmail author


Quaternary ammonium densely functionalized octa-benzylmethyl-containing poly(arylene ether ketone)s (QA-OMPAEKs) with ion exchange capacities (IECs) ranging from 1.23 to 2.21 mmol g−1 were synthesized from: (1) Ullmann coupling extension of tetra-benzylmethyl-containing bisphenol A; (2) condensation polymerization with activated dihalide in the presence of K2CO3; (3) selective bromination using N-bromosuccinimide; and (4) quantitative quaternization using trimethylamine. Both smallangle X-ray scattering (SAXS) and transmission electron microscope (TEM) characterizations revealed distinct nano-phase separation in QA-OMPAEKs as a result of the dense quaternization. The QA-OMPAEK-20 with an IEC of 1.98 mmol g−1 exhibited a high SO42− conductivity of 11.4 mS cm−1 and a low VO2+ permeability of 0.06×10−12 m2 s−1 at room temperature, leading to a dramatically higher ion selectivity than Nafion N212. Consequently, the vanadium redox flow battery (VRFB) assembled with QA-OMPAEK-20 achieved a Coulombic efficiency of 96.9% and an energy efficiency of 84.8% at a current density of 50 mA cm−2, which were much higher than those of the batteries assembled with Nafion N212 and a home-made control membrane without distinct nano-phase separation. Therefore, ion segregation is demonstrated to be a strategical route for the design of high performance anion exchange membranes (AEMs) for VRFBs.


anion exchange membrane vanadium redox flow battery poly(arylene ether ketone) phase separation ion selectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51503038, 51873037).

Supplementary material

11426_2018_9390_MOESM1_ESM.pdf (2.1 mb)
Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries


  1. 1.
    Ding C, Zhang H, Li X, Liu T, Xing F. J Phys Chem Lett, 2013, 4: 1281–1294CrossRefPubMedGoogle Scholar
  2. 2.
    Ravikumar MK, Rathod S, Jaiswal N, Patil S, Shukla A. J Solid State Electrochem, 2017, 21: 2467–2488CrossRefGoogle Scholar
  3. 3.
    Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M. Electrochim Acta, 2013, 101: 27–40CrossRefGoogle Scholar
  4. 4.
    Li X, Zhang H, Mai Z, Zhang H, Vankelecom I. Energy Environ Sci, 2011, 4: 1147–1160CrossRefGoogle Scholar
  5. 5.
    Chen L, Zhang S, Chen Y, Jian X. J Power Sources, 2017, 355: 23–30CrossRefGoogle Scholar
  6. 6.
    Hwang GJ, Kim SW, In DM, Lee DY, Ryu CH. J Ind Eng Chem, 2018, 60: 360–365CrossRefGoogle Scholar
  7. 7.
    Luo Q, Zhang H, Chen J, You D, Sun C, Zhang Y. J Membrane Sci, 2008, 325: 553–558CrossRefGoogle Scholar
  8. 8.
    Chen D, Wang S, Xiao M, Meng Y. Energy Environ Sci, 2010, 3: 622–628CrossRefGoogle Scholar
  9. 9.
    Zhang H, Zhang H, Li X, Mai Z, Wei W, Li Y. J Power Sources, 2012, 217: 309–315CrossRefGoogle Scholar
  10. 10.
    Lu W, Yuan Z, Zhao Y, Zhang H, Zhang H, Li X. Chem Soc Rev, 2017, 46: 2199–2236CrossRefPubMedGoogle Scholar
  11. 11.
    Mögelin H, Yao G, Zhong H, dos Santos AR, Barascu A, Meyer R, Krenkel S, Wassersleben S, Hickmann T, Enke D, Turek T, Kunz U. J Power Sources, 2018, 377: 18–25CrossRefGoogle Scholar
  12. 12.
    Wei W, Zhang H, Li X, Zhang H, Li Y, Vankelecom I. Phys Chem Chem Phys, 2013, 15: 1766–1771CrossRefPubMedGoogle Scholar
  13. 13.
    Zeng L, Zhao TS, Wei L, Zeng YK, Zhang ZH. J Power Sources, 2016, 331: 452–461CrossRefGoogle Scholar
  14. 14.
    Zhang B, Zhang S, Weng Z, Wang G, Zhang E, Yu P, Chen X, Wang X. J Power Sources, 2016, 325: 801–807CrossRefGoogle Scholar
  15. 15.
    Cha MS, Lee JY, Kim TH, Jeong HY, Shin HY, Oh SG, Hong YT. J Membrane Sci, 2017, 530: 73–83CrossRefGoogle Scholar
  16. 16.
    Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z. ChemSusChem, 2011, 4: 1388–1406CrossRefPubMedGoogle Scholar
  17. 17.
    Sata T. J Membrane Sci, 2000, 167: 1–31CrossRefGoogle Scholar
  18. 18.
    Chen D, Hickner MA, Agar E, Kumbur EC. ACS Appl Mater Interfaces, 2013, 5: 7559–7566CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang B, Zhang S, Xing D, Han R, Yin C, Jian X. J Power Sources, 2012, 217: 296–302CrossRefGoogle Scholar
  20. 20.
    Cha MS, Jeong HY, Shin HY, Hong SH, Kim TH, Oh SG, Lee JY, Hong YT. J Power Sources, 2017, 363: 78–86CrossRefGoogle Scholar
  21. 21.
    Ren J, Dong Y, Dai J, Hu H, Zhu Y, Teng X. J Membrane Sci, 2017, 544: 186–194CrossRefGoogle Scholar
  22. 22.
    Mauritz KA, Moore RB. Chem Rev, 2004, 104: 4535–4586CrossRefPubMedGoogle Scholar
  23. 23.
    Dai J, Dong Y, Yu C, Liu Y, Teng X. J Membrane Sci, 2018, 554: 324–330CrossRefGoogle Scholar
  24. 24.
    Jiang B, Wu L, Yu L, Qiu X, Xi J. J Membrane Sci, 2016, 510: 18–26CrossRefGoogle Scholar
  25. 25.
    Shin DW, Guiver MD, Lee YM. Chem Rev, 2017, 117: 4759–4805CrossRefPubMedGoogle Scholar
  26. 26.
    Li N, Wang C, Lee SY, Park CH, Lee YM, Guiver MD. Angew Chem Int Ed, 2011, 50: 9158–9161CrossRefGoogle Scholar
  27. 27.
    Zhang Z, Shen K, Lin L, Pang J. J Membrane Sci, 2016, 497: 318–327CrossRefGoogle Scholar
  28. 28.
    Wu C, Lu S, Wang H, Xu X, Peng S, Tan Q, Xiang Y. J Mater Chem A, 2016, 4: 1174–1179CrossRefGoogle Scholar
  29. 29.
    Zhou J, Zuo P, Liu Y, Yang Z, Xu T. Sci China Chem, 2018, 61: 1062–1087CrossRefGoogle Scholar
  30. 30.
    Chen D, Hickner MA, Agar E, Kumbur EC. Electrochem Commun, 2013, 26: 37–40CrossRefGoogle Scholar
  31. 31.
    Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T. J Membrane Sci, 2017, 522: 267–291CrossRefGoogle Scholar
  32. 32.
    Li Z, Liu L, Yu L, Wang L, Xi J, Qiu X, Chen L. J Power Sources, 2014, 272: 427–435CrossRefGoogle Scholar
  33. 33.
    Zeng QH, Liu QL, Broadwell I, Zhu AM, Xiong Y, Tu XP. J Membrane Sci, 2010, 349: 237–243CrossRefGoogle Scholar
  34. 34.
    Zhang S, Yin C, Xing D, Yang D, Jian X. J Membrane Sci, 2010, 363: 243–249CrossRefGoogle Scholar
  35. 35.
    Jasti A, Shahi VK. J Mater Chem A, 2013, 1: 6134–6137CrossRefGoogle Scholar
  36. 36.
    Tanaka M, Koike M, Miyatake K, Watanabe M. Polym Chem, 2011, 2: 99–106CrossRefGoogle Scholar
  37. 37.
    Kim E, Lee S, Woo S, Park SH, Yim SD, Shin D, Bae B. J Power Sources, 2017, 359: 568–576CrossRefGoogle Scholar
  38. 38.
    Wang C, Shen B, Xu C, Zhao X, Li J. J Membrane Sci, 2015, 492: 281–288CrossRefGoogle Scholar
  39. 39.
    Zhao Z, Wang J, Li S, Zhang S. J Power Sources, 2011, 196: 4445–4450CrossRefGoogle Scholar
  40. 40.
    Fujimoto CH, Hickner MA, Cornelius CJ, Loy DA. Macromolecules, 2005, 38: 5010–5016CrossRefGoogle Scholar
  41. 41.
    Huang F, Largier TD, Zheng W, Cornelius CJ. J Membrane Sci, 2018, 545: 1–10CrossRefGoogle Scholar
  42. 42.
    Wiedemann E, Heintz A, Lichtenthaler RN. J Membrane Sci, 1998, 141: 215–221CrossRefGoogle Scholar
  43. 43.
    Kim S, Tighe TB, Schwenzer B, Yan J, Zhang J, Liu J, Yang Z, Hickner MA. J Appl Electrochem, 2011, 41: 1201–1213CrossRefGoogle Scholar
  44. 44.
    Xing D, Zhang S, Yin C, Zhang B, Jian X. J Membrane Sci, 2010, 354: 68–73CrossRefGoogle Scholar
  45. 45.
    Cheng S, Beyer FL, Mather BD, Moore RB, Long TE. Macromolecules, 2011, 44: 6509–6517CrossRefGoogle Scholar
  46. 46.
    Chen D, Hickner MA. Macromolecules, 2013, 46: 9270–9278CrossRefGoogle Scholar
  47. 47.
    Yan J, Moore HD, Hibbs MR, Hickner MA. J Polym Sci Part B-Polym Phys, 2013, 51: 1790–1798CrossRefGoogle Scholar
  48. 48.
    Mallinson SL, Varcoe JR, Slade RCT. Electrochim Acta, 2014, 140: 145–151CrossRefGoogle Scholar
  49. 49.
    Zhang Q, Dong QF, Zheng MS, Tian ZW. J Membrane Sci, 2012, 421–422: 232–237Google Scholar
  50. 50.
    Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L. Energy Environ Sci, 2014, 7: 3135–3191CrossRefGoogle Scholar
  51. 51.
    Weiber EA, Jannasch P. ChemSusChem, 2014, 7: 2621–2630CrossRefPubMedGoogle Scholar
  52. 52.
    Monteiro R, Leirós J, Boaventura M, Mendes A. Electrochim Acta, 2018, 267: 80–93CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu Chen
    • 1
  • Zhongcheng Liu
    • 1
  • Meijin Lin
    • 2
  • Qilang Lin
    • 1
  • Bihai Tong
    • 3
  • Dongyang Chen
    • 1
    Email author
  1. 1.College of Materials Science and EngineeringFuzhou UniversityFuzhouChina
  2. 2.College of ChemistryFuzhou UniversityFuzhouChina
  3. 3.School of Metallurgy EngineeringAnhui University of TechnologyMaanshanChina

Personalised recommendations