Advertisement

Copper-copper iodide hybrid nanostructure as hole transport material for efficient and stable inverted perovskite solar cells

  • Jing CaoEmail author
  • Binghui WuEmail author
  • Jian Peng
  • Xiaoxia Feng
  • Congping Li
  • Yu TangEmail author
Articles
  • 31 Downloads

Abstract

A CuI coated Cu hybrid nanostructure by partial iodation of Cu nanowires was used as hole transport material (HTM) to enhance the charge transfer in inverted perovskite solar cells (PSCs). The outer CuI achieved efficient charge extraction, and the inner copper facilitated the extracted charges to be rapidly transferred, further improving the overall cell performance. Furthermore, we employed a mixture of [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) and ZnO nanoparticles as electron transport material (ETM) to achieve the fabrication of stable PSCs. The best efficiency was up to 18.8%. This work represents a fundamental clue for the design of efficient and stable PSCs using the chemical in-situ construction strategy for HTM and integration of PCBM and ZnO as ETM.

Keywords

Cu@CuI hybrid nanostructure efficient and stable perovskite solar cells PCBM/ZnO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21801104, 21871121, 21471071, 21431002, 21805232), and the Fundamental Research Funds for the Central Universities of China (lzujbky-2018-k08, lzujbky-2018-ot01, 20720180061).

Supplementary material

11426_2018_9386_MOESM1_ESM.pdf (538 kb)
Copper-Copper Iodide Hybrid Nanostructure as Hole Transport Material for Efficient and Stable Inverted Perovskite Solar Cells

References

  1. 1.
    Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682–689CrossRefGoogle Scholar
  2. 2.
    Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546CrossRefGoogle Scholar
  3. 3.
    Cao J, Liu YM, Jing X, Yin J, Li J, Xu B, Tan YZ, Zheng N. J Am Chem Soc, 2015, 137: 10914–10917CrossRefGoogle Scholar
  4. 4.
    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944–948CrossRefGoogle Scholar
  5. 5.
    Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354: 206–209CrossRefGoogle Scholar
  6. 6.
    Liu X, Huang P, Dong Q, Wang Z, Zhang K, Yu H, Lei M, Zhou Y, Song B, Li Y. Sci China Chem, 2017, 60: 136–143CrossRefGoogle Scholar
  7. 7.
    Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722–726CrossRefGoogle Scholar
  8. 8.
    Cao J, Li C, Lv X, Feng X, Meng R, Wu Y, Tang Y. J Am Chem Soc, 2018, 140: 11577–11580CrossRefGoogle Scholar
  9. 9.
    Li Y. Sci China Chem, 2018, doi: 10.1007/s11426-018-9330-2Google Scholar
  10. 10.
    Liu D, Zhou W, Tang H, Fu P, Ning Z. Sci China Chem, 2018, 61: 1278–1284CrossRefGoogle Scholar
  11. 11.
    Qu J, Jiang X, Yu Z, Lai J, Zhao Y, Hu M, Yang X, Sun L. Sci China Chem, 2018, 61: 172–179CrossRefGoogle Scholar
  12. 12.
    Wei Q, Ning Z. Sci China Chem, 2018, doi: 10.1007/s11426-018-9331-yGoogle Scholar
  13. 13.
    Cao J, Jing X, Yan J, Hu C, Chen R, Yin J, Li J, Zheng N. J Am Chem Soc, 2016, 138: 9919–9926CrossRefGoogle Scholar
  14. 14.
    Yi C, Luo J, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, Zakeeruddin SM, Röthlisberger U, Grätzel M. Energy Environ Sci, 2016, 9: 656–662CrossRefGoogle Scholar
  15. 15.
    Li C, Zhou Y, Wang L, Chang Y, Zong Y, Etgar L, Cui G, Padture NP, Pang S. Angew Chem Int Ed, 2017, 56: 7674–7678CrossRefGoogle Scholar
  16. 16.
    Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q, Zhou H. Adv Mater, 2017, 29: 1606774CrossRefGoogle Scholar
  17. 17.
    Peng J, Wu Y, Ye W, Jacobs DA, Shen H, Fu X, Wan Y, Duong T, Wu N, Barugkin C, Nguyen HT, Zhong D, Li J, Lu T, Liu Y, Lockrey MN, Weber KJ, Catchpole KR, White TP. Energy Environ Sci, 2017, 10: 1792–1800CrossRefGoogle Scholar
  18. 18.
    Cao J, Wu B, Chen R, Wu Y, Hui Y, Mao BW, Zheng N. Adv Mater, 2018, 30: 1705596–1705604CrossRefGoogle Scholar
  19. 19.
    Liu Y, Bag M, Renna LA, Page ZA, Kim P, Emrick T, Venkataraman D, Russell TP. Adv Energy Mater, 2016, 6: 1501606–1501612CrossRefGoogle Scholar
  20. 20.
    Akbulatov AF, Frolova LA, Griffin MP, Gearba IR, Dolocan A, Vanden Bout DA, Tsarev S, Katz EA, Shestakov AF, Stevenson KJ, Troshin PA. Adv Energy Mater, 2017, 7: 1700476CrossRefGoogle Scholar
  21. 21.
    Guo Y, Sato W, Shoyama K, Halim H, Itabashi Y, Shang R, Nakamura E. J Am Chem Soc, 2017, 139: 9598–9604CrossRefGoogle Scholar
  22. 22.
    Xi J, Wu Z, Jiao B, Dong H, Ran C, Piao C, Lei T, Song TB, Ke W, Yokoyama T, Hou X, Kanatzidis MG. Adv Mater, 2017, 29: 1606964CrossRefGoogle Scholar
  23. 23.
    Xu G, Bi P, Wang S, Xue R, Zhang J, Chen H, Chen W, Hao X, Li Y, Li Y. Adv Funct Mater, 2018, 28: 1804427–1804434CrossRefGoogle Scholar
  24. 24.
    Jeon NJ, Lee J, Noh JH, Nazeeruddin MK, Grätzel M, Seok SI. J Am Chem Soc, 2013, 135: 19087–19090CrossRefGoogle Scholar
  25. 25.
    Jeon NJ, Lee HG, Kim YC, Seo J, Noh JH, Lee J, Seok SI. J Am Chem Soc, 2014, 136: 7837–7840CrossRefGoogle Scholar
  26. 26.
    Chen H, Fu W, Huang C, Zhang Z, Li S, Ding F, Shi M, Li CZ, Jen AKY, Chen H. Adv Energy Mater, 2017, 7: 1700012CrossRefGoogle Scholar
  27. 27.
    Paek S, Qin P, Lee Y, Cho KT, Gao P, Grancini G, Oveisi E, Gratia P, Rakstys K, Al-Muhtaseb SA, Ludwig C, Ko J, Nazeeruddin MK. Adv Mater, 2017, 29: 1606555–1606561CrossRefGoogle Scholar
  28. 28.
    Xue R, Zhang M, Xu G, Zhang J, Chen W, Chen H, Yang M, Cui C, Li Y, Li Y. J Mater Chem A, 2018, 6: 404–413CrossRefGoogle Scholar
  29. 29.
    Kranthiraja K, Gunasekar K, Kim H, Cho AN, Park NG, Kim S, Kim BJ, Nishikubo R, Saeki A, Song M, Jin SH. Adv Mater, 2017, 29: 1700183CrossRefGoogle Scholar
  30. 30.
    Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin MK, Grätzel M. Nat Commun, 2014, 5: 3834–3839CrossRefGoogle Scholar
  31. 31.
    Ye S, Sun W, Li Y, Yan W, Peng H, Bian Z, Liu Z, Huang C. Nano Lett, 2015, 15: 3723–3728CrossRefGoogle Scholar
  32. 32.
    Xi Q, Gao G, Zhou H, Zhao Y, Wu C, Wang L, Guo P, Xu J. Nanoscale, 2017, 9: 6136–6144CrossRefGoogle Scholar
  33. 33.
    Liao Y, Liu H, Zhou W, Yang D, Shang Y, Shi Z, Li B, Jiang X, Zhang L, Quan LN, Quintero-Bermudez R, Sutherland BR, Mi Q, Sargent EH, Ning Z. J Am Chem Soc, 2017, 139: 6693–6699CrossRefGoogle Scholar
  34. 34.
    Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L. Adv Mater, 2017, 29: 1701073CrossRefGoogle Scholar
  35. 35.
    Xie F, Chen CC, Wu Y, Li X, Cai M, Liu X, Yang X, Han L. Energy Environ Sci, 2017, 10: 1942–1949CrossRefGoogle Scholar
  36. 36.
    Son MK, Steier L, Schreier M, Mayer MT, Luo J, Grätzel M. Energy Environ Sci, 2017, 10: 912–918CrossRefGoogle Scholar
  37. 37.
    Christians JA, Fung RCM, Kamat PV. J Am Chem Soc, 2014, 136: 758–764CrossRefGoogle Scholar
  38. 38.
    Chen WY, Deng LL, Dai SM, Wang X, Tian CB, Zhan XX, Xie SY, Huang RB, Zheng LS. J Mater Chem A, 2015, 3: 19353–19359CrossRefGoogle Scholar
  39. 39.
    Sepalage GA, Meyer S, Pascoe A, Scully AD, Huang F, Bach U, Cheng YB, Spiccia L. Adv Funct Mater, 2015, 25: 5650–5661CrossRefGoogle Scholar
  40. 40.
    Wang H, Yu Z, Jiang X, Li J, Cai B, Yang X, Sun L. Energy Technol, 2017, 5: 1836–1843CrossRefGoogle Scholar
  41. 41.
    Yu Z, Sun L. Small Methods, 2018, 2: 1700280–1700285CrossRefGoogle Scholar
  42. 42.
    Nazari P, Ansari F, Abdollahi Nejand B, Ahmadi V, Payandeh M, Salavati-Niasari M. J Phys Chem C, 2017, 121: 21935–21944CrossRefGoogle Scholar
  43. 43.
    Sun W, Ye S, Rao H, Li Y, Liu Z, Xiao L, Chen Z, Bian Z, Huang C. Nanoscale, 2016, 8: 15954–15960CrossRefGoogle Scholar
  44. 44.
    You J, Meng L, Song TB, Guo TF, Yang YM, Chang WH, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y. Nat Nanotech, 2016, 11: 75–81CrossRefGoogle Scholar
  45. 45.
    Cui C, Li Y, Li Y. Adv Energy Mater, 2017, 7: 1601251–1601271CrossRefGoogle Scholar
  46. 46.
    Xu G, Xue R, Chen W, Zhang J, Zhang M, Chen H, Cui C, Li H, Li Y, Li Y. Adv Energy Mater, 2018, 8: 1703054–1703062CrossRefGoogle Scholar
  47. 47.
    Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y. J Am Chem Soc, 2018, 140: 3825–3828CrossRefGoogle Scholar
  48. 48.
    Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, Grätzel M. Energy Environ Sci, 2016, 9: 1989–1997CrossRefGoogle Scholar
  49. 49.
    You J, Chen CC, Dou L, Murase S, Duan HS, Hawks SA, Xu T, Son HJ, Yu L, Li G, Yang Y. Adv Mater, 2012, 24: 5267–5272CrossRefGoogle Scholar
  50. 50.
    Li S, Chen Y, Huang L, Pan D. Inorg Chem, 2014, 53: 4440–4444CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina
  2. 2.Pen-Tung Sah Institute of Micro-Nano Science and TechnologyXiamen UniversityXiamenChina

Personalised recommendations