Advertisement

Science China Chemistry

, Volume 62, Issue 4, pp 430–433 | Cite as

A novel metal-free amorphous room-temperature phosphorescent polymer without conjugation

  • Disen Wang
  • Xi Wang
  • Chao Xu
  • Xiang MaEmail author
Communications

Abstract

Room-temperature phosphorescence (RTP) has attracted much attention due to its potential applications in the fields of biological imaging, chemical sensors and so forth. Particularly, amorphous metal-free RTP materials show special advantages of low cost and good processability. In addition, non-conjugated polymers have seldom been reported as phosphorescent materials. In this work, a novel non-conjugated amorphous metal-free copolymer composed of brominated olefins and acrylamide was prepared in a facile way, which could engender blue-purple RTP emission. Polymers with different kinds of brominated olefins and different ratios of two monomers have been investigated with the purpose of researching the composition/property relationship that may affect the RTP properties. This unique phenomenon could be due to the clustering of carbonyl and amino units caused molecular interaction, and the heavy-atom effect enhanced intersystem crossing. Meantime, the hydrogen bonding in the system enhanced the conformation rigidification to reduce the non-radiative decay. This work provided a delicate way to construct non-conjugated metal-free RTP materials and supplied a new insight into the development of RTP materials.

Keywords

room-temperature phosphorescence non-conjugation amorphous metal-free system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21788102, 21722603, 21476075), Programme of Introducing Talents of Discipline to Universities (B1607), and the Innovation Program of Shanghai Municipal Education Commission and the Fundamental Research Funds for the Central Universities. Prof. Yujian Zhang from Huzhou University was also be grateful for helping test the quantum yields.

Supplementary material

11426_2018_9383_MOESM1_ESM.pdf (472 kb)
Non-conjugated, Metal-Free, Amorphous, Room-Temperature Phosphorescent Polymers

References

  1. 1.
    Carretero AS, Castillo AS, Gutiérrez AF. Crit Rev Anal Chem, 2005, 35: 3–14CrossRefGoogle Scholar
  2. 2.
    Sánchez-Barragán I, Costa-Fernández JM, Sanz-Medel A, Valledor M, Campo JC. TrAC Trends Anal Chem, 2006, 25: 958–967CrossRefGoogle Scholar
  3. 3.
    Monaco S, Semeraro M, Tan W, Tian H, Ceroni P, Credi A. Chem Commun, 2012, 48: 8652–8654CrossRefGoogle Scholar
  4. 4.
    Ma X, Zhang J, Cao J, Yao X, Cao T, Gong Y, Zhao C, Tian H. Chem Sci, 2016, 7: 4582–4588CrossRefGoogle Scholar
  5. 5.
    Gong Y, Chen H, Ma X, Tian H. ChemPhysChem, 2016, 17: 1934–1938CrossRefGoogle Scholar
  6. 6.
    Sung YM, Gayam SR, Hsieh PY, Hsu HY, Diau EWG, Wu SP. ACS Appl Mater Interfaces, 2015, 7: 25961–25969CrossRefGoogle Scholar
  7. 7.
    Jin P, Guo Z, Chu J, Tan J, Zhang S, Zhu W. Ind Eng Chem Res, 2013, 52: 3980–3987CrossRefGoogle Scholar
  8. 8.
    Marriott G, Clegg RM, Arndt-Jovin DJ, Jovin TM. Biophys J, 1991, 60: 1374–1387CrossRefGoogle Scholar
  9. 9.
    Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T. Cancer Res, 2010, 70: 4490–4498CrossRefGoogle Scholar
  10. 10.
    Zhang G, Palmer GM, Dewhirst MW, Fraser CL. Nat Mater, 2009, 8: 747–751CrossRefGoogle Scholar
  11. 11.
    Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR. Nature, 1998, 395: 151–154CrossRefGoogle Scholar
  12. 12.
    Adachi C, Baldo MA, Thompson ME, Forrest SR. J Appl Phys, 2001, 90: 5048–5051CrossRefGoogle Scholar
  13. 13.
    Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W, Liu X. Chem Soc Rev, 2014, 43: 3259–3302CrossRefGoogle Scholar
  14. 14.
    Eastwood DL, Gouterman M. J Mol Spectr, 1970, 35: 359–375CrossRefGoogle Scholar
  15. 15.
    Liang AH, Zhang K, Zhang J, Huang F, Zhu XH, Cao Y. Chem Mater, 2013, 25: 1013–1019CrossRefGoogle Scholar
  16. 16.
    Chen Y, Che CM, Lu W. Chem Commun, 2015, 51: 5371–5374CrossRefGoogle Scholar
  17. 17.
    Yang Y, Wang KZ, Yan D. ACS Appl Mater Interfaces, 2016, 8: 15489–15496CrossRefGoogle Scholar
  18. 18.
    Menning S, Krämer M, Coombs BA, Rominger F, Beeby A, Dreuw A, Bunz UHF. J Am Chem Soc, 2013, 135: 2160–2163CrossRefGoogle Scholar
  19. 19.
    Yuan WZ, Shen XY, Zhao H, Lam JWY, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun JZ, Ma Y, Tang BZ. J Phys Chem C, 2010, 114: 6090–6099CrossRefGoogle Scholar
  20. 20.
    Bolton O, Lee K, Kim HJ, Lin KY, Kim J. Nat Chem, 2011, 3: 205–210CrossRefGoogle Scholar
  21. 21.
    Zhao W, He Z, Lam JWY, Peng Q, Ma H, Shuai Z, Bai G, Hao J, Tang BZ. Chem, 2016, 1: 592–602CrossRefGoogle Scholar
  22. 22.
    Bergamini G, Fermi A, Botta C, Giovanella U, Di Motta S, Negri F, Peresutti R, Gingras M, Ceroni P. J Mater Chem C, 2013, 1: 2717–2724CrossRefGoogle Scholar
  23. 23.
    Rollie ME, Patonay G, Warner IM. Ind Eng Chem Res, 1987, 26: 1–6CrossRefGoogle Scholar
  24. 24.
    Chen H, Ma X, Wu S, Tian H. Angew Chem Int Ed, 2015, 53: 14149–14152CrossRefGoogle Scholar
  25. 25 (a).
    Yang X, Yan D. Adv Opt Mater, 2016, 4: 897–905CrossRefGoogle Scholar
  26. 25 (b).
    Yang XG, Yan D. Chem Sci, 2016, 7: 4519–4526CrossRefGoogle Scholar
  27. 26.
    Liu Y, Zhan G, Liu ZW, Bian ZQ, Huang CH. Chin Chem Lett, 2016, 27: 1231–1240CrossRefGoogle Scholar
  28. 27.
    Wang CR, Gong YY, Yuan WZ, Zhang YM. Chin Chem Lett, 2016, 27: 1184–1192CrossRefGoogle Scholar
  29. 28.
    Cai S, Shi H, Zhang Z, Wang X, Ma H, Gan N, Wu Q, Cheng Z, Ling K, Gu M, Ma C, Gu L, An Z, Huang W. Angew Chem Int Ed, 2018, 57: 4005–4009CrossRefGoogle Scholar
  30. 29.
    Cai S, Shi H, Tian D, Ma H, Cheng Z, Wu Q, Gu M, Huang L, An Z, Peng Q, Huang W. Adv Funct Mater, 2018, 28: 1705045CrossRefGoogle Scholar
  31. 30.
    Hirata S, Totani K, Zhang J, Yamashita T, Kaji H, Marder SR, Watanabe T, Adachi C. Adv Funct Mater, 2013, 23: 3386–3397CrossRefGoogle Scholar
  32. 31.
    Li D, Lu F, Wang J, Hu W, Cao XM, Ma X, Tian H. J Am Chem Soc, 2018, 140: 1916–1923CrossRefGoogle Scholar
  33. 32.
    Xu L, Zou L, Chen H, Ma X. Dyes Pigments, 2017, 142: 300–305CrossRefGoogle Scholar
  34. 33.
    Li T, Ma X. Dyes Pigments, 2017, 148: 306–312CrossRefGoogle Scholar
  35. 34.
    Yan D. Sci China Chem, 2017, 60: 163–164CrossRefGoogle Scholar
  36. 35.
    Chen H, Xu L, Ma X, Tian H. Polym Chem, 2016, 7: 3989–3992CrossRefGoogle Scholar
  37. 36.
    Chen H, Yao X, Ma X, Tian H. Adv Opt Mater, 2016, 4: 1397–1401CrossRefGoogle Scholar
  38. 37.
    Zhang T, Chen H, Ma X, Tian H. Ind Eng Chem Res, 2017, 56: 3123–3128CrossRefGoogle Scholar
  39. 38.
    Wang X, Xu Y, Ma X, Tian H. Ind Eng Chem Res, 2018, 57: 2866–2872CrossRefGoogle Scholar
  40. 39.
    Lee D, Bolton O, Kim BC, Youk JH, Takayama S, Kim J. J Am Chem Soc, 2013, 135: 6325–6329CrossRefGoogle Scholar
  41. 40.
    Kwon MS, Lee D, Seo S, Jung J, Kim J. Angew Chem Int Ed, 2014, 53: 11177–11181CrossRefGoogle Scholar
  42. 41.
    Wang H, Wang H, Yang X, Wang Q, Yang Y. Langmuir, 2014, 31: 486–491CrossRefGoogle Scholar
  43. 42.
    Ma X, Xu C, Wang J, Tian H. Angew Chem Int Ed, 2018, 57: 10854–10858CrossRefGoogle Scholar
  44. 43.
    Zhou Q, Cao B, Zhu C, Xu S, Gong Y, Yuan WZ, Zhang Y. Small, 2016, 12: 6586–6592CrossRefGoogle Scholar
  45. 44.
    Chen X, Luo W, Ma H, Peng Q, Yuan WZ, Zhang Y. Sci China Chem, 2017, 61: 351–359CrossRefGoogle Scholar
  46. 45.
    Hu R, Leung NLC, Tang BZ. Chem Soc Rev, 2014, 43: 4494–4562CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations