Science China Chemistry

, Volume 62, Issue 4, pp 451–459 | Cite as

Rational design of a visible-light photochromic diarylethene: a simple strategy by extending conjugation with electron donating groups

  • Shanliang Tang
  • Fengling SongEmail author
  • Meiheng Lu
  • Keli Han
  • Xiaojun Peng


Photochromic diarylethenes have been widely used in many fields. However, their cyclization process must be induced by UV light. In this article, a simple strategy is developed by extending π-conjugation with electron donating groups. The modified dirylethene derivative can photocyclolize under 405-nm light with a good photochromic efficiency. Meanwhile, its absorption and moderate fluorescence can be switched effectively in both directions by visible lights (405 and 520 nm, respectively) in different solutions and in living cells. We believe that this simple method will become a versatile strategy for developing various dirylethylenes with visible-light photochromism.


diarylethylenes visible-light photochromism photoreaction quantum yield fluorescence photoswitching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21877011, 21576038, 21421005), the Fundamental Research Funds for the Central Universities of China (DUT16TD21), Science Program of Dalian City (2014J11JH133, 2015J12JH207) and the Supercomputing Center of Dalian University of Technology.

Supplementary material

11426_2018_9381_MOESM1_ESM.docx (3.9 mb)
A Visible-Light Photochromic Diarylethene: A Simple Strategy by Extending Conjugation with Electron Donating Groups


  1. 1.
    Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Nature, 2002, 420: 759–760CrossRefPubMedGoogle Scholar
  2. 2.
    Kobatake S, Takami S, Muto H, Ishikawa T, Irie M. Nature, 2007, 446: 778–781CrossRefPubMedGoogle Scholar
  3. 3.
    Andreasson J, Pischel U, Straight SD, Moore TA, Moore AL, Gust D. J Am Chem Soc, 2011, 133: 11641–11648CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Díaz SA, Giordano L, Azcárate JC, Jovin TM, Jares-Erijman EA. J Am Chem Soc, 2013, 135: 3208–3217CrossRefPubMedGoogle Scholar
  5. 5.
    Fukaminato T. J Photochem Photobiol C-Photochem Rev, 2011, 12: 177–208CrossRefGoogle Scholar
  6. 6.
    Heilemann M, Dedecker P, Hofkens J, Sauer M. Laser Photon Rev, 2009, 3: 180–202CrossRefGoogle Scholar
  7. 7.
    Raymo FM. Phys Chem Chem Phys, 2013, 15: 14840–14850CrossRefPubMedGoogle Scholar
  8. 8.
    Fürstenberg A, Heilemann M. Phys Chem Chem Phys, 2013, 15: 14919–14930CrossRefPubMedGoogle Scholar
  9. 9.
    Kwon J, Hwang J, Park J, Han GR, Han KY, Kim SK. Sci Rep, 2016, 5: 17804CrossRefGoogle Scholar
  10. 10.
    Wang S, Wang F, Li C, Li T, Cao D, Ma X. Sci China Chem, 2018, 61: 1301–1306CrossRefGoogle Scholar
  11. 11.
    Orgiu E, Crivillers N, Herder M, Grubert L, Pätzel M, Frisch J, Pavlica E, Duong DT, Bratina G, Salleo A, Koch N, Hecht S, Samorì P. Nat Chem, 2012, 4: 675–679CrossRefPubMedGoogle Scholar
  12. 12.
    Gemayel ME, Börjesson K, Herder M, Duong DT, Hutchison JA, Ruzié C, Schweicher G, Salleo A, Geerts Y, Hecht S, Orgiu E, Samorì P. Nat Commun, 2015, 6: 6330CrossRefPubMedGoogle Scholar
  13. 13.
    Pang SC, Hyun H, Lee S, Jang D, Lee MJ, Kang SH, Ahn KH. Chem Commun, 2012, 48: 3745CrossRefGoogle Scholar
  14. 14.
    Bléger D, Hecht S. Angew Chem Int Ed, 2015, 54: 11338–11349CrossRefGoogle Scholar
  15. 15.
    Jukes RTF, Adamo V, Hartl F, Belser P, De Cola L. Inorg Chem, 2004, 43: 2779–2792CrossRefPubMedGoogle Scholar
  16. 16.
    Yam VWW, Ko CC, Zhu N. J Am Chem Soc, 2004, 126: 12734–12735CrossRefPubMedGoogle Scholar
  17. 17.
    Tan W, Zhang Q, Zhang J, Tian H. Org Lett, 2009, 11: 161–164CrossRefPubMedGoogle Scholar
  18. 18.
    Fredrich S, Göstl R, Herder M, Grubert L, Hecht S. Angew Chem Int Ed, 2016, 55: 1208–1212CrossRefGoogle Scholar
  19. 19.
    Zhang Z, Zhang J, Wu B, Li X, Chen Y, Huang J, Zhu L, Tian H. Adv Opt Mater, 2018, 6: 1700847CrossRefGoogle Scholar
  20. 20.
    Carling CJ, Boyer JC, Branda NR. J Am Chem Soc, 2009, 131: 10838–10839CrossRefPubMedGoogle Scholar
  21. 21.
    Boyer JC, Carling CJ, Gates BD, Branda NR. J Am Chem Soc, 2010, 132: 15766–15772CrossRefPubMedGoogle Scholar
  22. 22.
    Zheng K, Han S, Zeng X, Wu Y, Song S, Zhang H, Liu X. Adv Mater, 2018, 30: 1801726CrossRefGoogle Scholar
  23. 23.
    Mori K, Ishibashi Y, Matsuda H, Ito S, Nagasawa Y, Nakagawa H, Uchida K, Yokojima S, Nakamura S, Irie M, Miyasaka H. J Am Chem Soc, 2011, 133: 2621–2625CrossRefPubMedGoogle Scholar
  24. 24.
    Tsivgoulis GM, Lehn JM. Adv Mater, 1997, 9: 627–630CrossRefGoogle Scholar
  25. 25.
    Thomas Bens A, Frewert D, Kodatis K, Kryschi C, Martin HD, Trommsdorff HP. Eur J Org Chem, 1998, 1998: 2333–2338CrossRefGoogle Scholar
  26. 26.
    Osuka A, Fujikane D, Shinmori H, Kobatake S, Irie M. J Org Chem, 2001, 66: 3913–3923CrossRefPubMedGoogle Scholar
  27. 27.
    Fukaminato T, Hirose T, Doi T, Hazama M, Matsuda K, Irie M. J Am Chem Soc, 2014, 136: 17145–17154CrossRefPubMedGoogle Scholar
  28. 28.
    Chen S, Chen LJ, Yang HB, Tian H, Zhu W. J Am Chem Soc, 2012, 134: 13596–13599CrossRefPubMedGoogle Scholar
  29. 29.
    Chen S, Guo Z, Zhu S, Shi W, Zhu W. ACS Appl Mater Interfaces, 2013, 5: 5623–5629CrossRefPubMedGoogle Scholar
  30. 30.
    Wu Y, Chen S, Yang Y, Zhang Q, Xie Y, Tian H, Zhu W. Chem Commun, 2012, 48: 528–530CrossRefGoogle Scholar
  31. 31.
    Wu Y, Xie Y, Zhang Q, Tian H, Zhu W, Li ADQ. Angew Chem Int Ed, 2014, 53: 2090–2094CrossRefGoogle Scholar
  32. 32.
    Jeong YC, Gao C, Lee IS, Yang SI, Ahn KH. Tetrahedron Lett, 2009, 50: 5288–5290CrossRefGoogle Scholar
  33. 33.
    Jeong YC, Yang SI, Kim E, Ahn KH. Tetrahedron, 2006, 62: 5855–5861CrossRefGoogle Scholar
  34. 34.
    Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U. Nat Protoc, 2013, 8: 1535–1550CrossRefPubMedGoogle Scholar
  35. 35.
    Velapoldi RA, Tønnesen HH. J Fluoresc, 2004, 14: 465–472CrossRefPubMedGoogle Scholar
  36. 36.
    Zhu W, Yang Y, Métivier R, Zhang Q, Guillot R, Xie Y, Tian H, Nakatani K. Angew Chem Int Ed, 2011, 50: 10986–10990CrossRefGoogle Scholar
  37. 37.
    Li W, Jiao C, Li X, Xie Y, Nakatani K, Tian H, Zhu W. Angew Chem Int Ed, 2014, 53: 4603–4607CrossRefGoogle Scholar
  38. 38.
    Wu NMW, Ng M, Lam WH, Wong HL, Yam VWW. J Am Chem Soc, 2017, 139: 15142–15150CrossRefPubMedGoogle Scholar
  39. 39.
    Hatchard CG, Parker CA. Proc R Soc A-Math Phys Eng Sci, 1956, 235: 518–536CrossRefGoogle Scholar
  40. 40.
    Montalti M, Credi A, Prodi L, Gandolfi M T. Handbook of Photochemistry. Chapter 12, Chemical Actionmetry. Boca Raton: CRC Press, 2006. 601–616Google Scholar
  41. 41.
    Cui X, Zhao J, Zhou Y, Ma J, Zhao Y. J Am Chem Soc, 2014, 136: 9256–9259CrossRefPubMedGoogle Scholar
  42. 42.
    Chen S, Li W, Li X, Zhu WH. J Mater Chem C, 2017, 5: 2717–2722CrossRefGoogle Scholar
  43. 43.
    Hu F, Cao M, Ma X, Liu SH, Yin J. J Org Chem, 2015, 80: 7830–7835CrossRefPubMedGoogle Scholar
  44. 44.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams D-Young, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A, Jr., Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Wallingford CT: Gaussian, Inc., 2016Google Scholar
  45. 45.
    Matsuda K, Irie M. J Am Chem Soc, 2000, 122: 7195–7201CrossRefGoogle Scholar
  46. 46.
    Boggio-Pasqua M, Ravaglia M, Bearpark MJ, Garavelli M, Robb MA. J Phys Chem A, 2003, 107: 11139–11152CrossRefGoogle Scholar
  47. 47.
    Ishibashi Y, Umesato T, Kobatake S, Irie M, Miyasaka H. J Phys Chem C, 2012, 116: 4862–4869CrossRefGoogle Scholar
  48. 48.
    Gillanders F, Giordano L, Díaz SA, Jovin TM, Jares-Erijman EA. Photochem Photobiol Sci, 2014, 13: 603CrossRefPubMedGoogle Scholar
  49. 49.
    Sumi T, Takagi Y, Yagi A, Morimoto M, Irie M. Chem Commun, 2014, 50: 3928–3930CrossRefGoogle Scholar
  50. 50.
    Peng J, Zhao J, Ye K, Gao H, Sun J, Lu R. Chem Asian J, 2018, 13: 1719–1724CrossRefPubMedGoogle Scholar
  51. 51.
    Xu J, Volfova H, Mulder RJ, Goerigk L, Bryant G, Riedle E, Ritchie C. J Am Chem Soc, 2018, 140: 10482–10487CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shanliang Tang
    • 1
  • Fengling Song
    • 1
    Email author
  • Meiheng Lu
    • 2
  • Keli Han
    • 2
  • Xiaojun Peng
    • 1
  1. 1.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianChina
  2. 2.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations