Advertisement

Direct evidence for hydrated protons as the active species in artificial photocatalytic water reduction into hydrogen

  • Feng Xiong
  • Zhengming Wang
  • Zongfang Wu
  • Guanghui Sun
  • Hong Xu
  • Peng Chai
  • Weixin Huang
Communications

Abstract

Photocatalytic water reduction to hydrogen over oxide semiconductors is one of the most extensively investigated artificial photocatalytic reactions, but the nature of the active species has not yet been elucidated. Here, we successfully prepared Pt/rutile TiO2110) surfaces with hydrated proton species via co-adsorption of hydrogen and water and observed the photocatalytic reduction of hydrated protons to H2 upon UV light illumination. These results provide experimental evidence to prove hydrated protons as the active species for photocatalytic water reduction to hydrogen and demonstrate the occurrence of photocatalytic reduction of hydrated protons to H2 within the H-bonding network on the catalyst surface instead of directly on the catalyst surface. The Pt-TiO2 interface is capable of dissociating water to form hydroxyl groups that facilitate the formation of H-bonding network on the catalyst surface to enhance the photocatalytic H2 production. Our results greatly advance fundamental understanding of artificial photocatalytic water reduction.

Keywords

surface chemistry reaction mechanism photocatalysis Pt/TiO2 H-bonding network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R & D Program of Ministry of Science and Technology of China (2017YFB0602205), the National Natural Science Foundation of China (21525313, 21761132005, 91745202), Chinese Academy of Sciences (KJZD-EW-M03), the Changjiang Scholars Program of Ministry of Education of China, the Fundamental Research Funds for the Central Universities of Ministry of Education of China (WK2060030017, WK2060030024) and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Supplementary material

11426_2018_9377_MOESM1_ESM.pdf (1.2 mb)
Direct Evidence for Hydrated Protons as the Active Species in Artificial Photocatalytic Water Reduction into Hydrogen

References

  1. 1 (a).
    Barber J. Chem Soc Rev, 2009, 38: 185–196CrossRefGoogle Scholar
  2. 1 (b).
    Lewis NS, Nocera DG. Proc Natl Acad Sci USA, 2006, 103: 15729–15735CrossRefGoogle Scholar
  3. 1 (c).
    Nelson N, Ben-Shem A. Nat Rev Mol Cell Biol, 2004, 5: 971–982CrossRefGoogle Scholar
  4. 2.
    Fujishima A, Honda K. Nature, 1972, 238: 37–38CrossRefGoogle Scholar
  5. 3 (a).
    Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253–278CrossRefGoogle Scholar
  6. 3 (b).
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295CrossRefGoogle Scholar
  7. 3 (c).
    Artero V, Chavarot-Kerlidou M, Fontecave M. Angew Chem Int Ed, 2011, 50: 7238–7266CrossRefGoogle Scholar
  8. 3 (d).
    Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM. Science, 2011, 334: 1256–1260CrossRefGoogle Scholar
  9. 3 (e).
    Tachibana Y, Vayssieres L, Durrant JR. Nat Photon, 2012, 6: 511–518CrossRefGoogle Scholar
  10. 4.
    Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C. J Catal, 2009, 266: 165–168CrossRefGoogle Scholar
  11. 5 (a).
    Diebold U. Surf Sci Rep, 2003, 48: 53–229CrossRefGoogle Scholar
  12. 5 (b).
    Henderson MA. Surf Sci Rep, 2011, 66: 185–297CrossRefGoogle Scholar
  13. 5 (c).
    Fujishima A, Zhang X, Tryk DA. Surf Sci Rep, 2008, 63: 515–582CrossRefGoogle Scholar
  14. 5 (d).
    Henderson MA, Lyubinetsky I. Chem Rev, 2013, 113: 4428–4455CrossRefGoogle Scholar
  15. 6 (a).
    Suzuki S, Fukui KI, Onishi H, Iwasawa Y. Phys Rev Lett, 2000, 84: 2156–2159CrossRefGoogle Scholar
  16. 6 (b).
    Kunat M, Burghaus U, Wöll C. Phys Chem Chem Phys, 2004, 6: 4203–4207CrossRefGoogle Scholar
  17. 6 (c).
    Fujino T, Katayama M, Inudzuka K, Okuno T, Oura K, Hirao T. Appl Phys Lett, 2001, 79: 2716–2718CrossRefGoogle Scholar
  18. 6 (d).
    Wendt S, Matthiesen J, Schaub R, Vestergaard EK, Laegsgaard E, Besenbacher F, Hammer B. Phys Rev Lett, 2006, 96: 066107CrossRefGoogle Scholar
  19. 6 (e).
    Yin XL, Calatayud M, Qiu H, Wang Y, Birkner A, Minot C, Wöll C. ChemPhysChem, 2008, 9: 253–256CrossRefGoogle Scholar
  20. 6 (f).
    Enevoldsen GH, Pinto HP, Foster AS, Jensen MCR, Hofer WA, Hammer B, Lauritsen JV, Besenbacher F. Phys Rev Lett, 2009, 102: 136103CrossRefGoogle Scholar
  21. 6 (g).
    Pan J, Maschhoff BL, Diebold U, Madey TE. J Vac Sci Technol A, 1992, 10: 2470–2476CrossRefGoogle Scholar
  22. 7 (a).
    Xu C, Yang W, Guo Q, Dai D, Chen M, Yang X. J Am Chem Soc, 2013, 135: 10206–10209CrossRefGoogle Scholar
  23. 7 (b).
    Du Y, Petrik NG, Deskins NA, Wang Z, Henderson MA, Kimmel GA, Lyubinetsky I. Phys Chem Chem Phys, 2012, 14: 3066–3074CrossRefGoogle Scholar
  24. 8 (a).
    Wu Z, Zhang W, Xiong F, Yuan Q, Jin Y, Yang J, Huang W. Phys Chem Chem Phys, 2014, 16: 7051–7057CrossRefGoogle Scholar
  25. 8 (b).
    Wu Z, Xiong F, Wang Z, Huang W. Chin Chem Lett, 2018, 29: 752–756CrossRefGoogle Scholar
  26. 9.
    Das D. Int J Hydrogen Energy, 2001, 26: 13–28CrossRefGoogle Scholar
  27. 10 (a).
    Wagner FT, Moylan TE. Surf Sci, 1988, 206: 187–202CrossRefGoogle Scholar
  28. 10 (b).
    Kizhakevariam N, Stuve EM. Surf Sci, 1992, 275: 223–236CrossRefGoogle Scholar
  29. 10 (c).
    Pan M, Pozun ZD, Yu WY, Henkelman G, Mullins CB. J Phys Chem Lett, 2012, 3: 1894–1899CrossRefGoogle Scholar
  30. 10 (d).
    Kim Y, Shin S, Kang H. Angew Chem Int Ed, 2015, 54: 7626–7630CrossRefGoogle Scholar
  31. 10 (e).
    Chen N, Blowers P, Masel RI. Surf Sci, 1999, 419: 150–157CrossRefGoogle Scholar
  32. 10 (f).
    Wang Q, Puntambekar A, Chakrapani V. J Phys Chem C, 2017, 121: 13151–13163CrossRefGoogle Scholar
  33. 11.
    Xu L, Wu Z, Zhang W, Jin Y, Yuan Q, Ma Y, Huang W. J Phys Chem C, 2012, 116: 22921–22929CrossRefGoogle Scholar
  34. 12 (a).
    Leung DYC, Fu X, Wang C, Ni M, Leung MKH, Wang X, Fu X. ChemSusChem, 2010, 3: 681–694CrossRefGoogle Scholar
  35. 12 (b).
    Yang J, Wang D, Han H, Li C. Acc Chem Res, 2013, 46: 1900–1909CrossRefGoogle Scholar
  36. 12 (c).
    Ma Y, Wang X, Jia Y, Chen X, Han H, Li C. Chem Rev, 2014, 114: 9987–10043CrossRefGoogle Scholar
  37. 12 (d).
    Chen X, Shen S, Guo L, Mao SS. Chem Rev, 2010, 110: 6503–6570CrossRefGoogle Scholar
  38. 13 (a).
    Tauster SJ, Fung SC, Garten RL. J Am Chem Soc, 1978, 100: 170–175CrossRefGoogle Scholar
  39. 13 (b).
    Horsley JA. J Am Chem Soc, 1979, 101: 2870–2874CrossRefGoogle Scholar
  40. 13 (c).
    Fu Q, Wagner T. Surf Sci Rep, 2007, 62: 431–498CrossRefGoogle Scholar
  41. 14.
    Henderson MA. Surf Sci Rep, 2002, 46: 1–308CrossRefGoogle Scholar
  42. 15.
    Weeks CL, Anbar AD, Wasylenki LE, Spiro TG. J Phys Chem A, 2007, 111: 12434–12438CrossRefGoogle Scholar
  43. 16.
    Geng Z, Jin X, Wang R, Chen X, Guo Q, Ma Z, Dai D, Fan H, Yang X. J Phys Chem C, 2018, 122: 10956–10962CrossRefGoogle Scholar
  44. 17.
    Onda K, Li B, Zhao J, Jordan KD, Yang J, Petek H. Science, 2005, 308: 1154–1158CrossRefGoogle Scholar
  45. 18 (a).
    Hodgson A, Haq S. Surf Sci Rep, 2009, 64: 381–451CrossRefGoogle Scholar
  46. 18 (b).
    Carrasco J, Hodgson A, Michaelides A. Nat Mater, 2012, 11: 667–674CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Feng Xiong
    • 1
  • Zhengming Wang
    • 1
  • Zongfang Wu
    • 1
  • Guanghui Sun
    • 1
  • Hong Xu
    • 1
  • Peng Chai
    • 1
  • Weixin Huang
    • 1
  1. 1.Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations