Science China Chemistry

, Volume 62, Issue 3, pp 347–354 | Cite as

Value-added anticancer reactivity of sub-5 nm Ag-drug nanoparticles derived from organosilver(I) MOF

  • Chao-Yu Song
  • Jia-Yuan Zhang
  • Yuan Qiu
  • Hai-Ping Jin
  • Hui-Ming Zhang
  • Shuang LiuEmail author
  • Hong Liu
  • Hong-Bin QiuEmail author
  • Guang-Gang GaoEmail author


A totally structure-determined organosilver(I) metal-oganic framework (MOF) of [{Ag18(CF3COO)18(H2O)2}{Ag4(erlotinib)4}]n•7nCH3OH•3nH2O (1) was first synthesized by the self-assembly of erlotinib drug ligand and silver salts in the study. 1 formed a NbO-like 3D network, which was built from Ag(I)-erlotinib induced chains and 18-core silver(I) nanoclusters. When 1 was dispersed in methanol solution, it formed derivative nanoparticles (1-NPs) with the average size of 3.81 nm. Silver(I) ion is an efficient reactive oxygen species (ROS) evocator, whereas the erlotinib ligand possesses the targeting activity towards tumor cells. Therefore, IC50 values of 1-NPs for A549 and MRC-5 cells were respectively 0.97 and 7.28 μM, which were lower than IC50 value of erlotinib. It should be noted that the 7.5-fold higher inhibition effect on A549 cells allows 1-NPs to be a potential targeting anticancer drug for curing lung cancer. The study opens a new avenue to design anticancer drugs based on organosilver(I) MOF derivatives that can realize the value-added reactivity by combining clinical drugs with ROS-inductive silver(I) ion.


erlotinib silver nanocluster targeting A549 cell supramolecular 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21271034, 31471312), the Heilongjiang Provincial Natural Science Foundation (B2017013), the Shandong Provincial Natural Science Foundation (ZR2017MEM003), the Principal Innovation and Entrepreneurship of Jiamusi University (XZYF2017-21), the Science and Technology Innovation Team Program of Jiamusi University (CXTD 2016-01), and Application Foundation and Advanced Technology Program of Jiamusi University (yzz2014-002).

Supplementary material

11426_2018_9376_MOESM1_ESM.doc (2.2 mb)
Value-added anticancer reactivity of sub-5nm Ag-drug nanoparticles derived from organosilver(I) MOF


  1. 1.
    Yao LY, Hau FKW, Yam VWW. J Am Chem Soc, 2014, 136: 10801–10806CrossRefGoogle Scholar
  2. 2.
    Jin S, Wang S, Song Y, Zhou M, Zhong J, Zhang J, Xia A, Pei Y, Chen M, Li P, Zhu M. J Am Chem Soc, 2014, 136: 15559–15565CrossRefGoogle Scholar
  3. 3.
    Fuhr O, Dehnen S, Fenske D. Chem Soc Rev, 2013, 42: 1871–1906CrossRefGoogle Scholar
  4. 4.
    Jin R. Nanoscale, 2015, 7: 1549–1565CrossRefGoogle Scholar
  5. 5.
    Wang QM, Lin YM, Liu KG. Acc Chem Res, 2015, 48: 1570–1579CrossRefGoogle Scholar
  6. 6.
    Joshi CP, Bootharaju MS, Bakr OM. J Phys Chem Lett, 2015, 6: 3023–3035CrossRefGoogle Scholar
  7. 7.
    Anson CE, Eichhöfer A, Issac I, Fenske D, Fuhr O, Sevillano P, Persau C, Stalke D, Zhang J. Angew Chem Int Ed, 2008, 47: 1326–1331CrossRefGoogle Scholar
  8. 8.
    Joshi CP, Bootharaju MS, Alhilaly MJ, Bakr OM. J Am Chem Soc, 2015, 137: 11578–11581CrossRefGoogle Scholar
  9. 9.
    Li S, Du XS, Li B, Wang JY, Li GP, Gao GG, Zang SQ. J Am Chem Soc, 2018, 140: 594–597CrossRefGoogle Scholar
  10. 10.
    Gruber F, Schulz-Dobrick M, Jansen M. Chem Eur J, 2010, 16: 1464–1469CrossRefGoogle Scholar
  11. 11.
    Li XY, Su HF, Yu K, Tan YZ, Wang XP, Zhao YQ, Sun D, Zheng LS. Nanoscale, 2015, 7: 8284–8288CrossRefGoogle Scholar
  12. 12.
    Gao CY, Zhao L, Wang MX. J Am Chem Soc, 2012, 134: 824–827CrossRefGoogle Scholar
  13. 13.
    Hau SCK, Cheng PS, Mak TCW. J Am Chem Soc, 2012, 134: 2922–2925CrossRefGoogle Scholar
  14. 14.
    Desireddy A, Conn BE, Guo J, Yoon B, Barnett RN, Monahan BM, Kirschbaum K, Griffith WP, Whetten RL, Landman U, Bigioni TP. Nature, 2013, 501: 399–402CrossRefGoogle Scholar
  15. 15.
    Cheng LP, Wang Z, Wu QY, Su HF, Peng T, Luo GG, Li YA, Sun D, Zheng LS. Chem Commun, 2018, 54: 2361–2364CrossRefGoogle Scholar
  16. 16.
    Zhang SS, Su HF, Wang Z, Wang XP, Chen WX, Zhao QQ, Tung CH, Sun D, Zheng LS. Chem Eur J, 2018, 24: 1998–2003CrossRefGoogle Scholar
  17. 17.
    Bootharaju MS, Joshi CP, Parida MR, Mohammed OF, Bakr OM. Angew Chem Int Ed, 2016, 55: 922–926CrossRefGoogle Scholar
  18. 18.
    Rais D, Yau J, Mingos DMP, Vilar R, White AJP, Williams DJ. Angew Chem Int Ed, 2001, 40: 3464–3467CrossRefGoogle Scholar
  19. 19.
    Jiang ZG, Shi K, Lin YM, Wang QM. Chem Commun, 2014, 50: 2353–2355CrossRefGoogle Scholar
  20. 20.
    Kang X, Wang S, Zhu M. Chem Sci, 2018, 9: 3062–3068CrossRefGoogle Scholar
  21. 21.
    Gao GG, Cheng PS, Mak TCW. J Am Chem Soc, 2009, 131: 18257–18259CrossRefGoogle Scholar
  22. 22.
    Gruber F, Jansen M. Angew Chem Int Ed, 2010, 49: 4924–4926CrossRefGoogle Scholar
  23. 23.
    Qiao J, Shi K, Wang QM. Angew Chem Int Ed, 2010, 49: 1765–1767CrossRefGoogle Scholar
  24. 24.
    Kurasawa M, Arisaka F, Ozeki T. Inorg Chem, 2015, 54: 1650–1654CrossRefGoogle Scholar
  25. 25.
    Qu M, Li H, Xie LH, Yan ST, Li JR, Wang JH, Wei CY, Wu YW, Zhang XM. J Am Chem Soc, 2017, 139: 12346–12349CrossRefGoogle Scholar
  26. 26.
    Xie YP, Mak TCW. J Am Chem Soc, 2011, 133: 3760–3763CrossRefGoogle Scholar
  27. 27.
    Li YY, Gao F, Beves JE, Li YZ, Zuo JL. Chem Commun, 2013, 49: 3658–3660CrossRefGoogle Scholar
  28. 28.
    Zhou K, Geng Y, Yan LK, Wang XL, Liu XC, Shan GG, Shao KZ, Su ZM, Yu YN. Chem Commun, 2014, 50: 11934–11937CrossRefGoogle Scholar
  29. 29.
    Zhou K, Qin C, Li HB, Yan LK, Wang XL, Shan GG, Su ZM, Xu C, Wang XL. Chem Commun, 2012, 48: 5844–5846CrossRefGoogle Scholar
  30. 30.
    Shen J, Wang Z, Sun D, Liu G, Yuan S, Kurmoo M, Xin X. Nanoscale, 2017, 9: 19191–19200CrossRefGoogle Scholar
  31. 31.
    Wang Z, Su HF, Tan YZ, Schein S, Lin SC, Liu W, Wang SA, Wang WG, Tung CH, Sun D, Zheng LS. Proc Natl Acad Sci USA, 2017, 114: 12132–12137CrossRefGoogle Scholar
  32. 32.
    Wang ZY, Wang MQ, Li YL, Luo P, Jia TT, Huang RW, Zang SQ, Mak TCW. J Am Chem Soc, 2018, 140: 1069–1076CrossRefGoogle Scholar
  33. 33.
    Fenske D, Anson CE, Eichhöfer A, Fuhr O, Ingendoh A, Persau C, Richert C. Angew Chem Int Ed, 2005, 44: 5242–5246CrossRefGoogle Scholar
  34. 34.
    Chitsaz S, Fenske D, Fuhr O. Angew Chem Int Ed, 2006, 45: 8055–8059CrossRefGoogle Scholar
  35. 35.
    Chakraborty I, Udayabhaskararao T, Pradeep T. Chem Commun, 2012, 48: 6788–6790CrossRefGoogle Scholar
  36. 36.
    Bian SD, Jia JH, Wang QM. J Am Chem Soc, 2009, 131: 3422–3423CrossRefGoogle Scholar
  37. 37.
    Song CY, Chai DF, Zhang RR, Liu H, Qiu YF, Guo HD, Gao GG. Dalton Trans, 2015, 44: 3997–4002CrossRefGoogle Scholar
  38. 38.
    Bestgen S, Fuhr O, Breitung B, Kiran Chakravadhanula VS, Guthausen G, Hennrich F, Yu W, Kappes MM, Roesky PW, Fenske D. Chem Sci, 2017, 8: 2235–2240CrossRefGoogle Scholar
  39. 39.
    Ghosh A, Ghosh D, Khatun E, Chakraborty P, Pradeep T. Nanoscale, 2017, 9: 1068–1077CrossRefGoogle Scholar
  40. 40.
    Wang QM, Mak TCW. Inorg Chem, 2003, 42: 1637–1643CrossRefGoogle Scholar
  41. 41.
    Lei Z, Pei XL, Jiang ZG, Wang QM. Angew Chem Int Ed, 2014, 53: 12771–12775CrossRefGoogle Scholar
  42. 42.
    Huang RW, Wei YS, Dong XY, Wu XH, Du CX, Zang SQ, Mak TCW. Nat Chem, 2017, 9: 689–697CrossRefGoogle Scholar
  43. 43.
    Huang RW, Dong XY, Yan BJ, Du XS, Wei DH, Zang SQ, Mak TCW. Angew Chem Int Ed, 2018, 57: 8560–8566CrossRefGoogle Scholar
  44. 44.
    Wang D, Lippard SJ. Nat Rev Drug Discov, 2005, 4: 307–320CrossRefGoogle Scholar
  45. 45.
    Wang X, Guo Z. Chem Soc Rev, 2013, 42: 202–224CrossRefGoogle Scholar
  46. 46.
    Chen Q, Yang Y, Lin X, Ma W, Chen G, Li W, Wang X, Yu Z. Chem Commun, 2018, 54: 5369–5372CrossRefGoogle Scholar
  47. 47.
    Yao X, Panichpisal K, Kurtzman N, Nugent K. Am J Med Sci, 2007, 334: 115–124CrossRefGoogle Scholar
  48. 48.
    Argyriou AA, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos HP. Cancer Treatment Rev, 2008, 34: 368–377CrossRefGoogle Scholar
  49. 49.
    McWhinney SR, Goldberg RM, McLeod HL. Mol Cancer Therapeutics, 2009, 8: 10–16CrossRefGoogle Scholar
  50. 50.
    Lu Y, Aimetti AA, Langer R, Gu Z. Nat Rev Mater, 2016, 2: 16075–16091CrossRefGoogle Scholar
  51. 51.
    Yu Z, Schmaltz RM, Bozeman TC, Paul R, Rishel MJ, Tsosie KS, Hecht SM. J Am Chem Soc, 2013, 135: 2883–2886CrossRefGoogle Scholar
  52. 52.
    Wang H, Lu Z, Wang L, Guo T, Wu J, Wan J, Zhou L, Li H, Li Z, Jiang D, Song P, Xie H, Zhou L, Xu X, Zheng S. Cancer Res, 2017, 77: 6963–6974CrossRefGoogle Scholar
  53. 53.
    Kawata K, Osawa M, Okabe S. Environ Sci Technol, 2009, 43: 6046–6051CrossRefGoogle Scholar
  54. 54.
    Miura N, Shinohara Y. Biochem Biophys Res Commun, 2009, 390: 733–737CrossRefGoogle Scholar
  55. 55.
    Foldbjerg R, Dang DA, Autrup H. Arch Toxicol, 2011, 85: 743–750CrossRefGoogle Scholar
  56. 56.
    Liu J, Zhao Y, Guo Q, Wang Z, Wang H, Yang Y, Huang Y. Biomaterials, 2012, 33: 6155–6161CrossRefGoogle Scholar
  57. 57.
    Ong C, Lim JZ, Ng CT, Li JJ, Yung LY, Bay BH. Curr Med Chem, 2013, 20: 772–781Google Scholar
  58. 58.
    Shen DF, Wu SS, Wang RR, Zhang Q, Ren ZJ, Liu H, Guo HD, Gao GG. Small, 2016, 12: 6153–6159CrossRefGoogle Scholar
  59. 59.
    Stamos J, Sliwkowski MX, Eigenbrot C. J Biol Chem, 2002, 277: 46265–46272CrossRefGoogle Scholar
  60. 60.
    Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ. Nat Biotechnol, 2005, 23: 329–336CrossRefGoogle Scholar
  61. 61.
    Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M, Parulekar W, Parulekar W. J Clin Oncol, 2007, 25: 1960–1966CrossRefGoogle Scholar
  62. 62.
    Sheldrick GM. SADABS 2.05. Göttingen: University of Göttingen, 2002Google Scholar
  63. 63.
    Sheldrick GM. Acta Crystlogr A Found Crystlogr, 1990, 46: 467–473CrossRefGoogle Scholar
  64. 64.
    Sheldrick GM. SHELXS-97, Program for Solution of Crystal Structures. Göttingen: University of Göttingen, 1997Google Scholar
  65. 65.
    Sheldrick GM. Acta Crystlogr A Found Crystlogr, 2008, 64: 112–122CrossRefGoogle Scholar
  66. 66.
    Costa DB, Nguyen KSH, Cho BC, Sequist LV, Jackman DM, Riely GJ, Yeap BY, Halmos B, Kim JH, Jänne PA, Huberman MS, Pao W, Tenen DG, Kobayashi S. Clin Cancer Res, 2008, 14: 7060–7067CrossRefGoogle Scholar
  67. 67.
    Bivona TG, Hieronymus H, Parker J, Chang K, Taron M, Rosell R, Moonsamy P, Dahlman K, Miller VA, Costa C, Hannon G, Sawyers CL. Nature, 2011, 471: 523–526CrossRefGoogle Scholar
  68. 68.
    Pennell NA, Neal JW, Chaft JE, Azzoli CG, Janne PA, Govindan R, Evans TL, Costa DB, Rosovsky RPG, Wakelee HA, Heist RS, Shaw AT, Temel JS, Shapiro MA, Muzikansky A, Lanuti M, Lynch TJ, Kris MG, Sequist LV. J Clin Oncol, 2014, 32: 7514–7514CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Basic MedicineJiamusi UniversityJiamusiChina
  2. 2.School of Public HealthJiamusi UniversityJiamusiChina
  3. 3.School of Materials Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations