Advertisement

Trimetallic Au@PdPt core-shell nanoparticles with ultrathin PdPt skin as highly stable electrocatalysts for the oxygen reduction reaction in acid solution

  • Xiaokun Li
  • Chunmei Zhang
  • Cheng Du
  • Zhihua Zhuang
  • Fuqin Zheng
  • Ping Li
  • Ziwei Zhang
  • Wei ChenEmail author
Articles
  • 3 Downloads

Abstract

To design efficient and low-cost core-shell electrocatalysts with an ultrathin platinum shell, the balance between platinum dosage and durability in acid solution is of great importance. In the present work, trimetallic Au@PdPt core-shell nanoparticles (NPs) with Pd/Pt molar ratios ranging from 0.31:1 to 4.20:1 were synthesized based on the Au catalytic reduction strategy and the subsequent metallic replacement reaction. When the Pd/Pt molar ratio is 1.19:1 (designated as Au@Pd1.19Pt1 NPs), the superior electrochemical activity and stability were achieved for oxygen reduction reaction (ORR) in acid solution. Especially, the specific and mass activities of Au@Pd1.19Pt1 NPs are 1.31 and 6.09 times higher than those of commercial Pt/C catalyst. In addition, the Au@Pd1.19Pt1 NPs presented a good durability in acid solution. After 3000 potential cycles between 0.1 and 0.7 V (vs. Ag/AgCl), the oxygen reduction activity is almost unchanged. This study provides a simple strategy to synthesize highperformance trimetallic ORR electrocatalyst for fuel cells.

Keywords

electrocatalyst core-shell platinum oxygen reduction reaction nanoparticle fuel cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21773224, 21633008, 21575134, 11374297, 21405149), the National Key Research and Development Plan (2016YFA0203200) and K. C. Wong Education Foundation.

Supplementary material

11426_2018_9375_MOESM1_ESM.pdf (1.1 mb)
Trimetallic Au@PdPt core-shell nanoparticles with ultrathin PdPt skin as highly stable electrocatalysts for the oxygen reduction reaction in acid solution

References

  1. 1.
    Shao M, Chang Q, Dodelet JP, Chenitz R. Chem Rev, 2016, 116: 3594–3657CrossRefGoogle Scholar
  2. 2.
    Chen A, Holt-Hindle P. Chem Rev, 2010, 110: 3767–3804CrossRefGoogle Scholar
  3. 3.
    Kang Y, Snyder J, Chi M, Li D, More KL, Markovic NM, Stamenkovic VR. Nano Lett, 2014, 14: 6361–6367CrossRefGoogle Scholar
  4. 4.
    Wang C, Markovic NM, Stamenkovic VR. ACS Catal, 2012, 2: 891–898CrossRefGoogle Scholar
  5. 5.
    Wang C, Chi M, Li D, Strmcnik D, van der Vliet D, Wang G, Komanicky V, Chang KC, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR. J Am Chem Soc, 2011, 133: 14396–14403CrossRefGoogle Scholar
  6. 6.
    Sasaki K, Naohara H, Choi YM, Cai Y, Chen WF, Liu P, Adzic RR. Nat Commun, 2012, 3: 1115CrossRefGoogle Scholar
  7. 7.
    He LL, Zheng JN, Song P, Zhong SX, Wang AJ, Chen Z, Feng JJ. J Power Sources, 2015, 276: 357–364CrossRefGoogle Scholar
  8. 8.
    Wang G, Huang B, Xiao L, Ren Z, Chen H, Wang D, Abruña HD, Lu J, Zhuang L. J Am Chem Soc, 2014, 136: 9643–9649CrossRefGoogle Scholar
  9. 9.
    Dai Y, Chen S. ACS Appl Mater Interfaces, 2015, 7: 823–829CrossRefGoogle Scholar
  10. 10.
    Hunt ST, Milina M, Alba-Rubio AC, Hendon CH, Dumesic JA, Román-Leshkov Y. Science, 2016, 352: 974–978CrossRefGoogle Scholar
  11. 11.
    Shi G, Yano H, Tryk DA, Iiyama A, Uchida H. ACS Catal, 2017, 7: 267–274CrossRefGoogle Scholar
  12. 12.
    Lu Y, Jiang Y, Chen W. Nano Energy, 2013, 2: 836–844CrossRefGoogle Scholar
  13. 13.
    Sun X, Li D, Ding Y, Zhu W, Guo S, Wang ZL, Sun S. J Am Chem Soc, 2014, 136: 5745–5749CrossRefGoogle Scholar
  14. 14.
    Guo S, Zhang S, Su D, Sun S. J Am Chem Soc, 2013, 135: 13879–13884CrossRefGoogle Scholar
  15. 15.
    Zhang S, Guo S, Zhu H, Su D, Sun S. J Am Chem Soc, 2012, 134: 5060–5063CrossRefGoogle Scholar
  16. 16.
    Barman SC, Hossain MF, Yoon H, Park JY. Biosens Bioelectron, 2018, 100: 16–22CrossRefGoogle Scholar
  17. 17.
    Wang L, Yamauchi Y. J Am Chem Soc, 2010, 132: 13636–13638CrossRefGoogle Scholar
  18. 18.
    Venarusso LB, Bettini J, Maia G. J Solid State Electrochem, 2016, 20: 1753–1764CrossRefGoogle Scholar
  19. 19.
    Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR. Nano Lett, 2011, 11: 919–926CrossRefGoogle Scholar
  20. 20.
    Wang Q, Chen S, Shi F, Chen K, Nie Y, Wang Y, Wu R, Li J, Zhang Y, Ding W, Li Y, Li L, Wei Z. Adv Mater, 2016, 28: 10673–10678CrossRefGoogle Scholar
  21. 21.
    Zeng J, Yang J, Lee JY, Zhou W. J Phys Chem B, 2006, 110: 24606–24611CrossRefGoogle Scholar
  22. 22.
    Zhang J, Sasaki K, Sutter E, Adzic RR. Science, 2007, 315: 220–222CrossRefGoogle Scholar
  23. 23.
    Mourdikoudis S, Chirea M, Zanaga D, Altantzis T, Mitrakas M, Bals S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I. Nanoscale, 2015, 7: 8739–8747CrossRefGoogle Scholar
  24. 24.
    Li D, Meng F, Wang H, Jiang X, Zhu Y. Electrochim Acta, 2016, 190: 852–861CrossRefGoogle Scholar
  25. 25.
    Chen A, Ostrom C. Chem Rev, 2015, 115: 11999–12044CrossRefGoogle Scholar
  26. 26.
    Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y. Science, 2009, 324: 1302–1305CrossRefGoogle Scholar
  27. 27.
    Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR. Angew Chem Int Ed, 2010, 49: 8602–8607CrossRefGoogle Scholar
  28. 28.
    Fang PP, Duan S, Lin XD, Anema JR, Li JF, Buriez O, Ding Y, Fan FR, Wu DY, Ren B, Wang ZL, Amatore C, Tian ZQ. Chem Sci, 2011, 2: 531–539CrossRefGoogle Scholar
  29. 29.
    Duan S, Ji YF, Fang PP, Chen YX, Xu X, Luo Y, Tian ZQ. Phys Chem Chem Phys, 2013, 15: 4625–4633CrossRefGoogle Scholar
  30. 30.
    Liu CW, Wei YC, Liu CC, Wang KW. J Mater Chem, 2012, 22: 4641–4644CrossRefGoogle Scholar
  31. 31.
    Huang X, Zhang H, Guo C, Zhou Z, Zheng N. Angew Chem Int Ed, 2009, 48: 4808–4812CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Li X, Li K, Xue B, Zhang C, Du C, Wu Z, Chen W. ACS Appl Mater Interfaces, 2017, 9: 32688–32697CrossRefGoogle Scholar
  33. 33.
    Turkevich J, Stevenson PC, Hillier J. Discuss Faraday Soc, 1951, 11: 55–75CrossRefGoogle Scholar
  34. 34.
    Frens G. Nat Phys Sci, 1973, 241: 20–22CrossRefGoogle Scholar
  35. 35.
    Lu Y, Wang Y, Chen W. J Power Sources, 2011, 196: 3033–3038CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaokun Li
    • 1
  • Chunmei Zhang
    • 1
    • 2
  • Cheng Du
    • 1
    • 3
  • Zhihua Zhuang
    • 1
    • 3
  • Fuqin Zheng
    • 1
    • 2
  • Ping Li
    • 1
    • 3
  • Ziwei Zhang
    • 1
    • 3
  • Wei Chen
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.University of Science and Technology of ChinaHefeiChina

Personalised recommendations