Advertisement

Science China Chemistry

, Volume 62, Issue 2, pp 280–286 | Cite as

Using selenium-conjugated polyethylene glycol to enhance the stability of gold nanoparticles in biologically relevant samples

  • Yang Xue
  • Bo Dong
  • Xuehui Liu
  • Fengchao Wang
  • Jie YangEmail author
  • Dingbin LiuEmail author
Articles
  • 59 Downloads

Abstract

Using stabilizing agents to maintain the physicochemical properties of colloids in complex environments is crucial for their realworld applications. In this article, we describe how selenium- (Se-) terminated polyethylene glycol (PEG) can serve as a highaffinity stabilizing agent for gold nanoparticles (AuNPs). Compared to AuNPs modified with standard thiolated PEG (S-PEG), Se-PEG-coated AuNPs are much more stable under extreme conditions such as high/low pH, high salt content, and high temperatures. We demonstrate that the Se anchor can prevent the dissociation of PEG ligands from AuNP surfaces in living cells, where a higher concentration of biothiols is usually present. These results indicate that Se-PEG is an excellent stabilizing agent that may facilitate further studies on metal NPs for various complex and physiological systems.

Keywords

selenium polyethylene glycol gold nanoparticles biological stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21475066, 21775075), the Fundamental Research Funds for Central Universities (China), and the Thousand Youth Talents Plan of China.

Supplementary material

11426_2018_9374_MOESM1_ESM.pdf (1002 kb)
Using Selenium-Conjugated Polyethylene Glycol to Dramatically Enhance the Stability of Gold Nanoparticles in Biologically Relevant Samples

References

  1. 1.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM. Chem Rev, 2012, 112: 2739–2779CrossRefGoogle Scholar
  2. 2.
    Jans H, Huo Q. Chem Soc Rev, 2012, 41: 2849–2866CrossRefGoogle Scholar
  3. 3.
    Bunz UHF, Rotello VM. Angew Chem Int Ed, 2010, 49: 3268–3279CrossRefGoogle Scholar
  4. 4.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Angew Chem Int Ed, 2016, 49: 3280–3294CrossRefGoogle Scholar
  5. 5.
    Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN. Nanomedicine, 2013, 8: 1601–1609CrossRefGoogle Scholar
  6. 6.
    Pissuwan D, Niidome T, Cortie MB. J Control Release, 2011, 149: 65–71CrossRefGoogle Scholar
  7. 7.
    Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ. J Am Chem Soc, 2010, 132: 4678–4684CrossRefGoogle Scholar
  8. 8.
    Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J. ACS Nano, 2011, 5: 3679–3692CrossRefGoogle Scholar
  9. 9.
    Van de Broek B, Devoogdt N, D’Hollander A, Gijs HL, Jans K, Lagae L, Muyldermans S, Maes G, Borghs G. ACS Nano, 2011, 5: 4319–4328CrossRefGoogle Scholar
  10. 10.
    Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F. Angew Chem Int Ed, 2011, 50: 891–895CrossRefGoogle Scholar
  11. 11.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Science, 1997, 277: 1078–1081CrossRefGoogle Scholar
  12. 12.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. J Phys Chem B, 2006, 110: 7238–7248CrossRefGoogle Scholar
  13. 13.
    Zhang F, Skoda MWA, Jacobs RMJ, Dressen DG, Martin RA, Martin CM, Clark GF, Lamkemeyer T, Schreiber F. J Phys Chem C, 2009, 113: 4839–4847CrossRefGoogle Scholar
  14. 14.
    Wang W, Wei QQ, Wang J, Wang BC, Zhang SH, Yuan Z. J Colloid Interface Sci, 2013, 404: 223–229CrossRefGoogle Scholar
  15. 15.
    Banerjee I, Pangule RC, Kane RS. Adv Mater, 2011, 23: 690–718CrossRefGoogle Scholar
  16. 16.
    Statz AR, Meagher RJ, Barron AE, Messersmith PB. J Am Chem Soc, 2005, 127: 7972–7973CrossRefGoogle Scholar
  17. 17.
    Hinterwirth H, Kappel S, Waitz T, Prohaska T, Lindner W, Lämmerhofer M. ACS Nano, 2013, 7: 1129–1136CrossRefGoogle Scholar
  18. 18.
    Gao J, Huang X, Liu H, Zan F, Ren J. Langmuir, 2012, 28: 4464–4471CrossRefGoogle Scholar
  19. 19.
    He G, Li J, Wang Z, Liu C, Liu X, Ji L, Xie C, Wang Q. Tetrahedron, 2017, 73: 272–277CrossRefGoogle Scholar
  20. 20.
    Li Z, Jin RC, Mirkin CA, Letsinger RL. Nucl Acids Res, 2002, 30: 1558–1562CrossRefGoogle Scholar
  21. 21.
    Crudden CM, Horton JH, Ebralidze II, Zenkina OV, McLean AB, Drevniok B, She Z, Kraatz HB, Mosey NJ, Seki T, Keske EC, Leake JD, Rousina-Webb A, Wu G. Nat Chem, 2014, 6: 409–414CrossRefGoogle Scholar
  22. 22.
    MacLeod MJ, Johnson JA. J Am Chem Soc, 2015, 137: 7974–7977CrossRefGoogle Scholar
  23. 23.
    DeJesus JF, Trujillo MJ, Camden JP, Jenkins DM. J Am Chem Soc, 2018, 140: 1247–1250CrossRefGoogle Scholar
  24. 24.
    Brenneisen P, Steinbrenner H, Sies H. Mol Aspects Med, 2005, 26: 256–267CrossRefGoogle Scholar
  25. 25.
    Fischer JL, Mihelc EM, Pollok KE, Smith ML. Mol Cancer Ther, 2007, 6: 355–361CrossRefGoogle Scholar
  26. 26.
    Kiremidjian-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G. Biol Trace Elem Res, 1992, 33: 23–35CrossRefGoogle Scholar
  27. 27.
    Gao X, Jiang L, Hu B, Kong F, Liu X, Xu K, Tang B. Anal Chem, 2018, 90: 4719–4724CrossRefGoogle Scholar
  28. 28.
    Hu B, Kong F, Gao X, Jiang L, Li X, Gao W, Xu K, Tang B. Angew Chem Int Ed, 2018, 57: 5306–5309CrossRefGoogle Scholar
  29. 29.
    Liu D, Qu W, Chen W, Zhang W, Wang Z, Jiang XY. Anal Chem, 2010, 82: 9606–9610CrossRefGoogle Scholar
  30. 30.
    Zhou Y, Wang S, Zhang K, Jiang XY. Angew Chem Int Ed, 2008, 47: 7454–7456CrossRefGoogle Scholar
  31. 31.
    Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC. Chem Soc Rev, 2010, 39: 1805–1834CrossRefGoogle Scholar
  32. 32.
    Heo DN, Yang DH, Moon HJ, Lee JB, Bae MS, Lee SC, Lee WJ, Sun IC, Kwon IK. Biomaterials, 2012, 33: 856–866CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of ChemistryNankai UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations