A fluorescent Eu(III) MOF for highly selective and sensitive sensing of picric acid

  • Qianqian Chen
  • Jiahui Cheng
  • Jin Wang
  • Liang Li
  • Zhipeng Liu
  • Xinhui ZhouEmail author
  • Yujian You
  • Wei HuangEmail author


A metal-organic framework [Eu3L3(CH3COO)2(H2O)23-OH)]•3DMF, (EuL, H2L=9H-carbazole-2,7-dicarboxylic acid, DMF=N,N-dimethylformamide) has been synthesized under solvothermal conditions and structurally characterized. In EuL, Eu6O8 clusters are four-bridged by carboxylates to form parallel-aligned Eu–O–C chains, which are further linked by the carbazole moieties of L2− ligands to form the three-dimensional framework with rhombic channels. The EuL material with characteristic emission of Eu3+ ion exhibits significant luminescence quenching response for picric acid (PA) and the linear Stern-Volmer plot was observed in the concentration range of 0.05–0.15 mM with Ksv of 98074 M−1. As far as we know, this Ksv is among the highest values for COFs and MOFs in detection of PA. The excellent anti-interference ability and repeatability were also verified by experiments. Lastly, we investigated the luminescence quenching mechanism in the EuL sensing system.


europium metal-organic frameworks picric acid sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (61575096), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (YX03001), Jiangsu Province Double Innovation Talent Program (090300014001), Nanjing University of Posts & Telecommunications (NY212004, NY217074), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0748 and KYCX18_0857).

Supplementary material

11426_2018_9367_MOESM1_ESM.docx (781 kb)
Supplementary material, approximately 781 KB.


  1. 1.
    Joarder B, Desai AV, Samanta P, Mukherjee S, Ghosh SK. Chem Eur J, 2015, 21: 965–969CrossRefGoogle Scholar
  2. 2.
    (a) Nagarkar SS, Desai AV, Ghosh SK. Chem Commun, 2014, 50: 8915–8918CrossRefGoogle Scholar
  3. (b).
    Wang T, Jia Y, Chen Q, Feng R, Tian S, Hu TL, Bu XH. Sci China Chem, 2016, 59: 959–964CrossRefGoogle Scholar
  4. (c).
    Zhou X, Zhu Y, Li L, Yang T, Wang J, Huang W. Sci China Chem, 2017, 60: 1130–1135CrossRefGoogle Scholar
  5. (d).
    Zhou X, Chen Q, Li L, Yang T, Wang J, Huang W. Sci China Chem, 2017, 60: 115–121CrossRefGoogle Scholar
  6. 3.
    Li A, Li L, Lin Z, Song L, Wang ZH, Chen Q, Yang T, Zhou XH, Xiao HP, Yin XJ. New J Chem, 2015, 39: 2289–2295CrossRefGoogle Scholar
  7. 4.
    Cheng T, Hu J, Zhou C, Wang Y, Zhang M. Sci China Chem, 2016, 59: 929–947CrossRefGoogle Scholar
  8. 5.
    Nagarkar SS, Joarder B, Chaudhari AK, Mukherjee S, Ghosh SK. Angew Chem Int Ed, 2013, 52: 2881–2885CrossRefGoogle Scholar
  9. 6.
    Goel N, Kumar N. Inorg Chim Acta, 2017, 463: 14–19CrossRefGoogle Scholar
  10. 7.
    Xu Y, Li B, Li W, Zhao J, Sun S, Pang Y. Chem Commun, 2013, 49: 4764–4766CrossRefGoogle Scholar
  11. 8.
    Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero AM, Parra M, Gil S. Chem Soc Rev, 2012, 41: 1261–1296CrossRefGoogle Scholar
  12. 9.
    Håkansson K, Coorey RV, Zubarev RA, Talrose VL, Håkansson P. J Mass Spectrom, 2000, 35: 337–346CrossRefGoogle Scholar
  13. 10.
    Sylvia JM, Janni JA, Klein JD, Spencer KM. Anal Chem, 2000, 72: 5834–5840CrossRefGoogle Scholar
  14. 11.
    Krausa M, Schorb K. J Electroanal Chem, 1999, 461: 10–13CrossRefGoogle Scholar
  15. 12.
    Toal SJ, Trogler WC. J Mater Chem, 2006, 16: 2871–2883CrossRefGoogle Scholar
  16. 13.
    Banerjee D, Hu Z, Li J. Dalton Trans, 2014, 43: 10668–10685CrossRefGoogle Scholar
  17. 14.
    Xu X, Lu Y, Yang Y, Nosheen F, Wang X. Sci China Mater, 2015, 58: 370–377CrossRefGoogle Scholar
  18. 15.
    Zhao Y, Liu J, Horn M, Motta N, Hu M, Li Y. Sci China Mater, 2018, 61: 159–184CrossRefGoogle Scholar
  19. 16.
    Li XY, Li YZ, Yang Y, Hou L, Wang YY, Zhu Z. Chem Commun, 2017, 53: 12970–12973CrossRefGoogle Scholar
  20. 17.
    (a) Li YZ, Wang HH, Yang HY, Hou L, Wang YY, Zhu Z. Chem Eur J, 2018, 24: 865–871CrossRefGoogle Scholar
  21. (b).
    Liu B, Ren C, Wang YY, Hou L, Liu RT, Shi QZ. Sci China Chem, 2012, 55: 341–346CrossRefGoogle Scholar
  22. 18.
    (a) Ullah L, Zhao G, Xu Z, He H, Usman M, Zhang S. Sci China Chem, 2018, 61: 402–411CrossRefGoogle Scholar
  23. (b).
    Farrusseng D, Aguado S, Pinel C. Angew Chem Int Ed, 2009, 48: 7502–7513CrossRefGoogle Scholar
  24. 19.
    (a) Zhu L, Liu XQ, Jiang HL, Sun LB. Chem Rev, 2017, 117: 8129–8176CrossRefGoogle Scholar
  25. 19a.
    (b) Zhai B, Xu H, Li ZY, Cao CS, Zhao B. Sci China Chem, 2017, 60: 1328–1333CrossRefGoogle Scholar
  26. 20.
    Yan W, Zhang C, Chen S, Han L, Zheng H. ACS Appl Mater Interfaces, 2017, 9: 1629–1634CrossRefGoogle Scholar
  27. 21.
    Wu JX, Yan B. J Colloid Interface Sci, 2017, 504: 197–205CrossRefGoogle Scholar
  28. 22.
    Zhou X, Cheng J, Li L, Chen Q, You Y, Xiao H, Huang W. Sci China Mater, 2018, 61: 752–757CrossRefGoogle Scholar
  29. 23.
    (a) Ning Y, Wang L, Yang GP, Wu Y, Bai N, Zhang W, Wang YY. Dalton Trans, 2016, 45: 12800–12806CrossRefGoogle Scholar
  30. (b).
    Wu Y, Yang GP, Zhao Y, Wu WP, Liu B, Wang YY. Dalton Trans, 2015, 44: 3271–3277CrossRefGoogle Scholar
  31. (c).
    Li L, Chen Q, Niu Z, Zhou X, Yang T, Huang W. J Mater Chem C, 2016, 4: 1900–1905CrossRefGoogle Scholar
  32. 24.
    Sun N, Yan B. Dalton Trans, 2017, 46: 875–881CrossRefGoogle Scholar
  33. 25.
    Chen B, Wang L, Xiao Y, Fronczek FR, Xue M, Cui Y, Qian G. Angew Chem Int Ed, 2009, 48: 500–503CrossRefGoogle Scholar
  34. 26.
    (a) Zhu Y, Zhou X, Li L, You Y, Huang W. Sci China Chem, 2017, 60: 1581–1587CrossRefGoogle Scholar
  35. (b).
    Wu Y, Yang GP, Zhou X, Li J, Ning Y, Wang YY. Dalton Trans, 2015, 44: 10385–10391CrossRefGoogle Scholar
  36. 27.
    Yao ZQ, Li GY, Xu J, Hu TL, Bu XH. Chem Eur J, 2018, 24: 3192–3198CrossRefGoogle Scholar
  37. 28.
    Chen YQ, Li GR, Chang Z, Qu YK, Zhang YH, Bu XH. Chem Sci, 2013, 4: 3678–3682CrossRefGoogle Scholar
  38. 29.
    Zhou XH, Li L, Li HH, Li A, Yang T, Huang W. Dalton Trans, 2013, 42: 12403–12409CrossRefGoogle Scholar
  39. 30.
    Zhou X, Li H, Xiao H, Li L, Zhao Q, Yang T, Zuo J, Huang W. Dalton Trans, 2013, 42: 5718–5723CrossRefGoogle Scholar
  40. 31.
    Hu Z, Deibert BJ, Li J. Chem Soc Rev, 2014, 43: 5815–5840CrossRefGoogle Scholar
  41. 32.
    Xu XY, Yan B. Dalton Trans, 2016, 45: 7078–7084CrossRefGoogle Scholar
  42. 33.
    Xia TF, Cui YJ, Yang Y, Qian GD. ChemNanoMat, 2016, 3: 51–57CrossRefGoogle Scholar
  43. 34.
    Meng Q, Xin X, Zhang L, Dai F, Wang R, Sun D. J Mater Chem A, 2015, 3: 24016–24021CrossRefGoogle Scholar
  44. 35.
    Li L, Zhu Y, Zhou X, Brites CDS, Ananias D, Lin Z, Paz FAA, Rocha J, Huang W, Carlos LD. Adv Funct Mater, 2016, 26: 8677–8684CrossRefGoogle Scholar
  45. 36.
    Rao X, Song T, Gao J, Cui Y, Yang Y, Wu C, Chen B, Qian G. J Am Chem Soc, 2013, 135: 15559–15564CrossRefGoogle Scholar
  46. 37.
    Zhang C, Yan Y, Pan Q, Sun L, He H, Liu Y, Liang Z, Li J. Dalton Trans, 2015, 44: 13340–13346CrossRefGoogle Scholar
  47. 38.
    Hu Y, Ding M, Liu XQ, Sun LB, Jiang HL. Chem Commun, 2016, 52: 5734–5737CrossRefGoogle Scholar
  48. 39.
    Xiao JD, Qiu LG, Ke F, Yuan YP, Xu GS, Wang YM, Jiang X. J Mater Chem A, 2013, 1: 8745–8752CrossRefGoogle Scholar
  49. 40.
    Sanda S, Parshamoni S, Biswas S, Konar S. Chem Commun, 2015, 51: 6576–6579CrossRefGoogle Scholar
  50. 41.
    Zhang C, Sun L, Yan Y, Li J, Song X, Liu Y, Liang Z. Dalton Trans, 2015, 44: 230–236CrossRefGoogle Scholar
  51. 42.
    Shi ZQ, Guo ZJ, Zheng HG. Chem Commun, 2015, 51: 8300–8303CrossRefGoogle Scholar
  52. 43.
    Yi XC, Xi FG, Wang K, Su Z, Gao EQ. J Solid State Chem, 2013, 206: 293–299CrossRefGoogle Scholar
  53. 44.
    Yi XC, Huang MX, Qi Y, Gao EQ. Dalton Trans, 2014, 43: 3691–3697CrossRefGoogle Scholar
  54. 45.
    Das A, Biswas S. Sens Actuat B-Chem, 2017, 250: 121–131CrossRefGoogle Scholar
  55. 46.
    SAINT-Plus, version, 6.02. Madison: Bruker analytical X-ray System, 1999Google Scholar
  56. 47.
    Sheldrick GM. SADABS, An empirical absorption correction program. Madison: Bruker Analytical X-ray Systems, 1996Google Scholar
  57. 48.
    Sheldrick GM. A short history of SHELX. Acta Crystallogr, 2008, A64: 112–122Google Scholar
  58. 49.
    Spek AL. J Appl Crystlogr, 2003, 36: 7–13CrossRefGoogle Scholar
  59. 50.
    Lin G, Ding H, Yuan D, Wang B, Wang C. J Am Chem Soc, 2016, 138: 3302–3305CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qianqian Chen
    • 1
  • Jiahui Cheng
    • 1
  • Jin Wang
    • 4
  • Liang Li
    • 1
    • 2
  • Zhipeng Liu
    • 1
  • Xinhui Zhou
    • 1
    Email author
  • Yujian You
    • 1
  • Wei Huang
    • 1
    • 3
    Email author
  1. 1.Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts & TelecommunicationsNanjingChina
  2. 2.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)NanjingChina
  3. 3.Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi’anChina
  4. 4.School of Telecommunication and Information EngineeringNanjing University of Posts & TelecommunicationsNanjingChina

Personalised recommendations