A cyanostilbene-based molecule with aggregation-induced emission properties: amplified spontaneous emission, protonation effect and electroluminescence

  • Yujie Dong
  • Suqian Ma
  • Xiaoyu Zhang
  • Jingyu Qian
  • Nianyong Zhu
  • Bin XuEmail author
  • Cheuk-Lam HoEmail author
  • Wenjing TianEmail author
  • Wai-Yeung WongEmail author


A terpyridine-substituted cyanostilbene derivative (Z)-2-(4′-([2,2′:6′,2″-terpyridin]-4′-yl)-[1,1′-biphenyl]-4-yl)-3-phenylacrylonitrile (CNSTPy) was synthesized and characterized. The compound exhibits remarkable aggregation-induced emission phenomenon and its single crystal shows a blue emission with fluorescent efficiency as high as 45%. Based on its aggregation state behavior, multiple applications towards exploring its lasing, fluorescence switching and electroluminescence properties were realized. Amplified spontaneous emission (ASE) was observed from the crystal and verified by the variable pump strip method, with a threshold value of ~1.5 mJ cm−2. The protonation/deprotonation processes accompanied by the formation of different molecular aggregation structure result in the distinct blue and yellow emissions. Additionally, the molecule also shows a moderate electroluminescence performance.


aggregation-induced emission cyanostilbene amplified spontaneous emission protonation effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Hong Kong Research Grants Council (C6009-17G), the Areas of Excellence Scheme of HKSAR (AoE/P-03/08), the Clarea Au Endowed Professorship in Energy (847S) and the Hong Kong Polytechnic University (1-ZE1C). Y.J. Dong thanks the Hong Kong PhD Fellowship Scheme (HKPFS) from the Hong Kong Research Grants Council for the financial support.

Supplementary material

11426_2018_9366_MOESM1_ESM.pdf (78 kb)
Supplementary material, approximately 79 KB.


  1. 1.
    Li W, Liu D, Shen F, Ma D, Wang Z, Feng T, Xu Y, Yang B, Ma Y. Adv Funct Mater, 2012, 22: 2797–2803CrossRefGoogle Scholar
  2. 2.
    Wang N, Evans JS, Mei J, Zhang J, Khoo IC, He S. Opt Express, 2015, 23: 33938CrossRefGoogle Scholar
  3. 3.
    Han T, Feng X, Tong B, Shi J, Chen L, Zhi J, Dong Y. Chem Commun, 2012, 48: 416–418CrossRefGoogle Scholar
  4. 4.
    Thomas SW, Joly GD, Swager TM. Chem Rev, 2007, 107: 1339–1386CrossRefGoogle Scholar
  5. 5.
    Chen CT. Chem Mater, 2004, 16: 4389–4400CrossRefGoogle Scholar
  6. 6.
    Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 381: 1740–1741CrossRefGoogle Scholar
  7. 7.
    Tang BZ, Zhan X, Yu G, Sze Lee PP, Liu Y, Zhu D. J Mater Chem, 2001, 11: 2974–2978CrossRefGoogle Scholar
  8. 8.
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940CrossRefGoogle Scholar
  9. 9.
    Hong Y, Lam JWY, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388CrossRefGoogle Scholar
  10. 10.
    Xie Z, Chen C, Xu S, Li J, Zhang Y, Liu S, Xu J, Chi Z. Angew Chem Int Ed, 2015, 54: 7181–7184CrossRefGoogle Scholar
  11. 11.
    Goswami N, Yao Q, Luo Z, Li J, Chen T, Xie J. J Phys Chem Lett, 2016, 7: 962–975CrossRefGoogle Scholar
  12. 12.
    Tsujimoto H, Ha DG, Markopoulos G, Chae HS, Baldo MA, Swager TM. J Am Chem Soc, 2017, 139: 4894–4900CrossRefGoogle Scholar
  13. 13.
    Zhou Y, Liu H, Zhao N, Wang Z, Michael MZ, Xie N, Tang BZ, Tang Y. Sci China Chem, 2018, 61: 892–897CrossRefGoogle Scholar
  14. 14.
    Ding S, Liu M, Hong Y. Sci China Chem, 2018, 61: 882–891CrossRefGoogle Scholar
  15. 15.
    Hang Y, Cai X, Wang J, Jiang T, Hua J, Liu B. Sci China Chem, 2018, 61: 898–908CrossRefGoogle Scholar
  16. 16.
    Qiu Z, Hao B, Gu X, Wang Z, Xie N, Lam JWY, Hao H, Tang BZ. Sci China Chem, 2018, 61: 966–970CrossRefGoogle Scholar
  17. 17.
    Qin W, Yang Z, Jiang Y, Lam JWY, Liang G, Kwok HS, Tang BZ. Chem Mater, 2015, 27: 3892–3901CrossRefGoogle Scholar
  18. 18.
    Huang J, Yang M, Yang J, Tang R, Ye S, Li Q, Li Z. Org Chem Front, 2015, 2: 1608–1615CrossRefGoogle Scholar
  19. 19.
    Liu Y, Chen S, Lam JWY, Lu P, Kwok RTK, Mahtab F, Kwok HS, Tang BZ. Chem Mater, 2011, 23: 2536–2544CrossRefGoogle Scholar
  20. 20.
    Dong Y, Xu B, Zhang J, Tan X, Wang L, Chen J, Lv H, Wen S, Li B, Ye L, Zou B, Tian W. Angew Chem Int Ed, 2012, 51: 10782–10785CrossRefGoogle Scholar
  21. 21.
    Li H, Zhang X, Chi Z, Xu B, Zhou W, Liu S, Zhang Y, Xu J. Org Lett, 2011, 13: 556–559CrossRefGoogle Scholar
  22. 22.
    Aldred MP, Li C, Zhang GF, Gong WL, Li ADQ, Dai Y, Ma D, Zhu MQ. J Mater Chem, 2012, 22: 7515–7528CrossRefGoogle Scholar
  23. 23.
    Chen ZQ, Chen T, Liu JX, Zhang GF, Li C, Gong WL, Xiong ZJ, Xie NH, Tang BZ, Zhu MQ. Macromolecules, 2015, 48: 7823–7835CrossRefGoogle Scholar
  24. 24.
    Chen T, Chen ZQ, Gong WL, Li C, Zhu MQ. Mater Chem Front, 2017, 1: 1841–1846CrossRefGoogle Scholar
  25. 25.
    Wang Y, Liu T, Bu L, Li J, Yang C, Li X, Tao Y, Yang W. J Phys Chem C, 2012, 116: 15576–15583CrossRefGoogle Scholar
  26. 26.
    Wang L, Zhang Z, Cheng X, Ye K, Li F, Wang Y, Zhang H. J Mater Chem C, 2015, 3: 499–505CrossRefGoogle Scholar
  27. 27.
    Ma S, Zhang J, Liu Y, Qian J, Xu B, Tian W. J Phys Chem Lett, 2017, 8: 3068–3072CrossRefGoogle Scholar
  28. 28.
    Li W, Wang S, Zhang Y, Gao Y, Dong Y, Zhang X, Song Q, Yang B, Ma Y, Zhang C. J Mater Chem C, 2017, 5: 8097–8104CrossRefGoogle Scholar
  29. 29.
    Li Y, Li F, Zhang H, Xie Z, Xie W, Xu H, Li B, Shen F, Ye L, Hanif M, Ma D, Ma Y. Chem Commun, 2007, 265: 231–233CrossRefGoogle Scholar
  30. 30.
    Yeh HC, Wu WC, Wen YS, Dai DC, Wang JK, Chen CT. J Org Chem, 2004, 69: 6455–6462CrossRefGoogle Scholar
  31. 31.
    Palayangoda SS, Cai X, Adhikari RM, Neckers DC. Org Lett, 2008, 10: 281–284CrossRefGoogle Scholar
  32. 32.
    An BK, Gierschner J, Park SY. Acc Chem Res, 2012, 45: 544–554CrossRefGoogle Scholar
  33. 33.
    Fang HH, Chen QD, Yang J, Xia H, Gao BR, Feng J, Ma YG, Sun HB. J Phys Chem C, 2010, 114: 11958–11961CrossRefGoogle Scholar
  34. 34.
    Zhang J, Xu B, Chen J, Ma S, Dong Y, Wang L, Li B, Ye L, Tian W. Adv Mater, 2014, 26: 739–745CrossRefGoogle Scholar
  35. 35.
    Xie Z, Yang B, Li F, Cheng G, Liu L, Yang G, Xu H, Ye L, Hanif M, Liu S, Ma D, Ma Y. J Am Chem Soc, 2005, 127: 14152–14153CrossRefGoogle Scholar
  36. 36.
    Park S, Kwon OH, Kim S, Park S, Choi MG, Cha M, Park SY, Jang DJ. J Am Chem Soc, 2005, 127: 10070–10074CrossRefGoogle Scholar
  37. 37.
    Zhang J, Chen J, Xu B, Wang L, Ma S, Dong Y, Li B, Ye L, Tian W. Chem Commun, 2013, 49: 3878–3880CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Functional Materials and Department of ChemistryHong Kong Baptist UniversityHong KongChina
  2. 2.State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchunChina
  3. 3.Department of Applied Biology & Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongChina
  4. 4.State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations