Advertisement

Science China Chemistry

, Volume 62, Issue 2, pp 262–270 | Cite as

A novel ZnO/reduced graphene oxide and Prussian blue modified carbon paste electrode for the sensitive determination of Rutin

  • Ozma J D’Souza
  • Ronald J MascarenhasEmail author
  • Ashis K Satpati
  • Basavanakote M Basavaraja
Articles
  • 35 Downloads

Abstract

A carbon paste modified sensor based on a novel composite of zinc oxide nanoparticles deposited on reduced graphene oxide (ZnO-rGrO) and Prussian blue (PB) was drop-cast (ZnO-rGrO-PB/MCPE) for the sensitive estimation of Rutin (Rtn) at pH 7.0. The high surface area of ZnO-rGrO and electrocatalytic property of PB promotes the oxidation of Rtn. Field emission scanning electron microscope (FE-SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques were employed to confirm the deposition of ZnO-rGrO and PB on carbon paste electrode (CPE). The ability of ZnO-rGrO-PB/MCPE in charge transfer at the interface was investigated using electrochemical impedance spectroscopy (EIS). The heterogeneous rate constant (ks) and the charge transfer coefficient (α) have been calculated as 6.08 s−1 and 0.74 respectively. This sensor showed a wide linear response for Rtn from 7.0×10−8 to 7.0×10−6 M and 7.0×10−6 to 1.0×10−4 M with a limit of detection (2.05±0.04)×10−8 M (S/N=3). The application of ZnO-rGrO-PB/MCPE was found in the analysis of Rtn in fruit juice samples using standard addition method. This sensor showed good reproducibility, stability, selectivity and sensitivity.

Keywords

Rutin zinc oxide nanoparticles reduced graphene oxide Prussian blue modified carbon paste electrode ascorbic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Board of Research in Nuclear Sciences (BRNS, BARC, Mumbai), Department of Atomic Energy, Government of India (37(2)/14/10/2014-brns). The authors also acknowledge Mr Dhason A. for the FE-SEM and AFM characterisation.

Supplementary material

11426_2018_9353_MOESM1_ESM.pdf (631 kb)
A novel ZnO/reduced graphene oxide and Prussian blue modified carbon paste electrode for the sensitive determination of Rutin in the presence of Ascorbic acid

References

  1. 1.
    Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G. Trends Food Sci Tech, 2017, 67: 220–235CrossRefGoogle Scholar
  2. 2.
    Zielinska D, Szawara-Nowak D, Zielinski H. Pol J Food Nutr Sci, 2010, 60: 315–321Google Scholar
  3. 3.
    Squadrito F, Altavilla D, Bosso SO. Eur Rev Med Pharmacol Sci, 2000, 4: 21–24Google Scholar
  4. 4.
    Horcajada MN, Sanchez C, Membrez Scalfo F, Drion P, Comblain F, Taralla S, Donneau AF, Offord EA, Henrotin Y. Osteoarthritis Cartilage, 2015, 23: 94–102CrossRefGoogle Scholar
  5. 5.
    Attia TZ. Spectrochim Acta Mol Biomol Spectrosc, 2016, 169: 82–86CrossRefGoogle Scholar
  6. 6.
    Li S, Zhang L, Chen L, Zhong Y, Ni Y. Anal Methods, 2016, 8: 4056–4063CrossRefGoogle Scholar
  7. 7.
    Vytras K, Svancara I, Metelka R. J Serb Chem Soc, 2009, 74: 1021–1033CrossRefGoogle Scholar
  8. 8.
    Yang S, Li G, Wang G, Zhao J, Qiao Z, Qu L. Sens Actuators B-Chem, 2015, 206: 126–132CrossRefGoogle Scholar
  9. 9.
    Sun W, Yang M, Li Y, Jiang Q, Liu S, Jiao K. J Pharm Biomed Anal, 2008, 48: 1326–1331CrossRefGoogle Scholar
  10. 10.
    Niu X, Weng W, Yin C, Niu Y, Li G, Dong R, Men Y, Sun W. J Electroanal Chem, 2018, 811: 78–83CrossRefGoogle Scholar
  11. 11.
    Gholivand MB, Mohammadi-Behzad L, Hosseinkhani H. Anal Biochem, 2016, 493: 35–43CrossRefGoogle Scholar
  12. 12.
    Yang S, Li G, Zhao J, Zhu H, Qu L. J Electroanal Chem, 2014, 717-718: 225–230CrossRefGoogle Scholar
  13. 13.
    da Silva JG, e Silva MRL, de Oliveira AC, SouzaDe JR, Vaz CMP, de Castro CSP. J Food Comp Anal, 2012, 25: 1–8CrossRefGoogle Scholar
  14. 14.
    Roushani M, Valipour A. Sens Actuators B-Chem, 2016, 222: 1103–1111CrossRefGoogle Scholar
  15. 15.
    Roushani M, Dizajdizi BZ. Catal Commun, 2015, 69: 133–137CrossRefGoogle Scholar
  16. 16.
    Rodrígues JA, Fernández-García M. Synthesis, Properties and Applications of Oxide Nanoparticles. New Jersey: Whiley, 2007CrossRefGoogle Scholar
  17. 17.
    Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Nano-Micro Lett, 2015, 7: 219–242CrossRefGoogle Scholar
  18. 18.
    Afzali M, Mostafavi A, Shamspur T. Mater Sci Eng-C, 2016, 68: 789–797CrossRefGoogle Scholar
  19. 19.
    Madrakian T, Ghasemi H, Haghshenas E, Afkhami A. RSC Adv, 2016, 6: 33851–33856CrossRefGoogle Scholar
  20. 20.
    Cui S, Li L, Ding Y, Zhang J, Yang H, Wang Y. Talanta, 2017, 164: 291–299CrossRefGoogle Scholar
  21. 21.
    Gonzalez C, García-Beltrán O, Nagles E. Anal Methods, 2018, 10: 1196–1202CrossRefGoogle Scholar
  22. 22.
    Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW. Nano Lett, 2008, 8: 1965–1970CrossRefGoogle Scholar
  23. 23.
    Zou B, Wang XX, Huang XX, Wang JN. Chem Commun, 2015, 51: 741–744CrossRefGoogle Scholar
  24. 24.
    Guo Z, Li D, Luo XK, Li YH, Zhao QN, Li MM, Zhao YT, Sun TS, Ma C. J Colloid Interface Sci, 2017, 490: 11–22CrossRefGoogle Scholar
  25. 25.
    Kesavan S, Kumar DR, Lee YR, Shim JJ. Sens Actuators B-Chem, 2017, 241: 455–465CrossRefGoogle Scholar
  26. 26.
    Haldorai Y, Yeon SH, Huh YS, Han YK. Sens Actuators B-Chem, 2017, 239: 1221–1230CrossRefGoogle Scholar
  27. 27.
    Pandey PC, Panday D. Electrochim Acta, 2016, 190: 758–765CrossRefGoogle Scholar
  28. 28.
    Wang L, Tricard S, Yue P, Zhao J, Fang J, Shen W. Biosens Bioelectron, 2016, 77: 1112–1118CrossRefGoogle Scholar
  29. 29.
    Yang Y, Cao Y, Wang X, Fang G, Wang S. Biosens Bioelectron, 2015, 64: 247–254CrossRefGoogle Scholar
  30. 30.
    Xu T, Zhang H, Li X, Xie Z, Li X. Biosens Bioelectron, 2015, 73: 167–173CrossRefGoogle Scholar
  31. 31.
    Nagles E, Penagos-Llanos J, García-Beltrán O, Hurtado J. J Anal Chem, 2018, 73: 504–511CrossRefGoogle Scholar
  32. 32.
    Manasa G, Mascarenhas RJ, Satpati AK, D’Souza OJ, Dhason A. Mater Sci Eng-C, 2017, 73: 552–561CrossRefGoogle Scholar
  33. 33.
    Shilpa S, Basavaraja BM, Majumder SB, Sharma A. J Mater Chem A, 2015, 3: 5344–5351CrossRefGoogle Scholar
  34. 34.
    Pacholski C, Kornowski A, Weller H. Angew Chem Int Ed, 2002, 41: 1188–1191CrossRefGoogle Scholar
  35. 35.
    Kim HH, Park S, Yi Y, Son DI, Park C, Hwang DK, Choi WK. Sci Rep, 2015, 5: 8968–8972CrossRefGoogle Scholar
  36. 36.
    Ricci F, Arduini F, Amine A, Moscone D, Palleschi G. J Electroanal Chem, 2004, 563: 229–237CrossRefGoogle Scholar
  37. 37.
    Luo Y, Hu Q, Liu G, Sun D. Indian J Chem, 2015, 53A: 187–192Google Scholar
  38. 38.
    Buleandra M, Rabinca AA, Mihailciuc C, Balan A, Nichita C, Stamatin I, Ciucu AA. Sens Actuators B-Chem, 2014, 203: 824–832CrossRefGoogle Scholar
  39. 39.
    Sun W, Dong L, Lu Y, Deng Y, Yu J, Sun X, Zhu Q. Sens Actuators B-Chem, 2014, 199: 36–41CrossRefGoogle Scholar
  40. 40.
    Greef R, Peat R, Peter LM, Pletcher D, Robinson J. Instrumental Methods in Electrochemistry. Cambridge: Woodhead Publishing Ltd., 2010. 178Google Scholar
  41. 41.
    Laviron E. J Electroanal Chem Interfacial Electrochem, 1979, 101: 19–28CrossRefGoogle Scholar
  42. 42.
    Gao F, Qi X, Cai X, Wang Q, Gao F, Sun W. Thin Solid Films, 2012, 520: 5064–5069CrossRefGoogle Scholar
  43. 43.
    Zou C, Bin D, Yang B, Zhang K, Du Y. RSC Adv, 2016, 6: 107851–107858CrossRefGoogle Scholar
  44. 44.
    Yang H, Li B, Cui R, Xing R, Liu S. J Nanopart Res, 2017, 19: 354–364CrossRefGoogle Scholar
  45. 45.
    Yang X, Long J, Sun D. Electroanalysis, 2016, 28: 83–87CrossRefGoogle Scholar
  46. 46.
    Li S, Yang B, Wang C, Wang J, Feng Y, Yan B, Xiong Z, Du Y. J Electroanal Chem, 2017, 786: 20–27CrossRefGoogle Scholar
  47. 47.
    Yan L, Niu X, Wang W, Li X, Sun X, Zheng C, Wang J, Sun W. Int J Electrochem Sci, 2016, 11: 1738–1750Google Scholar
  48. 48.
    Liu Z, Xue Q, Guo Y. Biosens Bioelectron, 2017, 89: 444–452CrossRefGoogle Scholar
  49. 49.
    Elçin S, Yola ML, Eren T, Girgin B, Atar N. Electroanalysis, 2016, 28: 611–619CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ozma J D’Souza
    • 1
  • Ronald J Mascarenhas
    • 1
    • 2
    Email author
  • Ashis K Satpati
    • 3
  • Basavanakote M Basavaraja
    • 4
  1. 1.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.Electrochemistry Research Group, Department of ChemistrySt. Joseph’s CollegeBangaloreIndia
  3. 3.Analytical Chemistry DivisionBhabha Atomic Research Centre, Anushakthi Nagar, TrombayMumbaiIndia
  4. 4.Department of ChemistryPES UniversityBanglaoreIndia

Personalised recommendations