Science China Chemistry

, Volume 61, Issue 12, pp 1494–1502 | Cite as

Materials based on group IVA elements for alloying-type sodium storage

  • Xiaocui Zhu
  • Menglei Sun
  • Jiangfeng NiEmail author
  • Liang LiEmail author
Mini Reviews


There are five elements in group IVA of the periodic table, i.e., carbon (C), silicon (Si), germanium (Ge), tin (Sn) and lead (Pb), of which Si, Ge, and Sn can be used as alloying-type electrode materials for sodium-ion batteries. Pb is also capable of alloying with sodium, but it is generally ruled out as the cause of toxicity. In recent years, materials based on Si, Ge, and Sn have been intensively exploited as sodium anodes because of their abundant resource and large capacity with reasonable working voltages. However, successful deployment of these anode materials needs to overcome kinetic and thermodynamic issues related to poor electrochemical activity, particle pulverization associated with large volume swelling, and formation of unstable solid-electrolyte interphase. A diversity of material strategies has been employed to address these difficulties, mainly leveraging on the knowledge recently advanced for lithium anodes. This review highlights such issues and provides valuable insights for possible solutions, which serves as a guide and inspiration for future material innovation for rechargeable batteries.


silicon germanium tin alloy anode sodium-ion battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51672182, 51772197, 51872192), the Thousand Young Talents Plan, the Jiangsu Natural Science Foundation (BK20180002, BK20151219), the Key University Science Research Project of Jiangsu Province (17KJA430013), the 333 High-Level Talents Project in Jiangsu Province, the Six Talent Peaks Project in Jiangsu Province, and of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    Hwang JY, Myung ST, Sun YK. Chem Soc Rev, 2017, 46: 3529–3614CrossRefGoogle Scholar
  2. 2.
    Slater MD, Kim D, Lee E, Johnson CS. Adv Funct Mater, 2013, 23: 947–958CrossRefGoogle Scholar
  3. 3.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem Rev, 2014, 114: 11636–11682CrossRefGoogle Scholar
  4. 4.
    Kundu D, Talaie E, Duffort V, Nazar LF. Angew Chem Int Ed, 2015, 54: 3431–3448CrossRefGoogle Scholar
  5. 5.
    Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S. Phys Chem Chem Phys, 2014, 16: 15007–15028CrossRefGoogle Scholar
  6. 6.
    Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L. Acc Chem Res, 2016, 49: 231–240CrossRefGoogle Scholar
  7. 7.
    Kim Y, Ha KH, Oh SM, Lee KT. Chem Eur J, 2014, 20: 11980–11992CrossRefGoogle Scholar
  8. 8.
    Hou H, Qiu X, Wei W, Zhang Y, Ji X. Adv Energy Mater, 2017, 7: 1602898CrossRefGoogle Scholar
  9. 9.
    Ni J, Li L, Lu J. ACS Energy Lett, 2018, 3: 1137–1144CrossRefGoogle Scholar
  10. 10.
    Ni J, Fu S, Wu C, Maier J, Yu Y, Li L. Adv Mater, 2016, 28: 2259–2265CrossRefGoogle Scholar
  11. 11.
    Fu S, Ni J, Xu Y, Zhang Q, Li L. Nano Lett, 2016, 16: 4544–4551CrossRefGoogle Scholar
  12. 12.
    Ni J, Wang W, Wu C, Liang H, Maier J, Yu Y, Li L. Adv Mater, 2017, 29: 1605607CrossRefGoogle Scholar
  13. 13.
    Peng L, Zhu Y, Chen D, Ruoff RS, Yu G. Adv Energy Mater, 2016, 6: 1600025CrossRefGoogle Scholar
  14. 14.
    Xiao Y, Lee SH, Sun YK. Adv Energy Mater, 2017, 7: 1601329CrossRefGoogle Scholar
  15. 15.
    Fan X, Mao J, Zhu Y, Luo C, Suo L, Gao T, Han F, Liou SC, Wang C. Adv Energy Mater, 2015, 5: 1500174CrossRefGoogle Scholar
  16. 16.
    Lu Y, Zhou P, Lei K, Zhao Q, Tao Z, Chen J. Adv Energy Mater, 2017, 7: 1601973CrossRefGoogle Scholar
  17. 17.
    Jache B, Adelhelm P. Angew Chem, 2014, 126: 10333–10337CrossRefGoogle Scholar
  18. 18.
    Ni J, Huang Y, Gao L. J Power Sources, 2013, 223: 306–311CrossRefGoogle Scholar
  19. 19.
    Li Y, Hu YS, Titirici MM, Chen L, Huang X. Adv Energy Mater, 2016, 6: 1600659CrossRefGoogle Scholar
  20. 20.
    Jung SC, Kim HJ, Kang YJ, Han YK. J Alloys Compd, 2016, 688: 158–163CrossRefGoogle Scholar
  21. 21.
    Chevrier VL, Ceder G. J Electrochem Soc, 2011, 158: A1011CrossRefGoogle Scholar
  22. 22.
    Wang X, Fan L, Gong D, Zhu J, Zhang Q, Lu B. Adv Funct Mater, 2016, 26: 1104–1111CrossRefGoogle Scholar
  23. 23.
    Zhang L, Hu X, Chen C, Guo H, Liu X, Xu G, Zhong H, Cheng S, Wu P, Meng J, Huang Y, Dou S, Liu H. Adv Mater, 2017, 29: 1604708CrossRefGoogle Scholar
  24. 24.
    Arrieta U, Katcho NA, Arcelus O, Carrasco J. Sci Rep, 2017, 7: 5350CrossRefGoogle Scholar
  25. 25.
    Marzouk A, Soto FA, Burgos JC, Balbuena PB, El-Mellouhi F. J Electrochem Soc, 2017, 164: A1644–A1650CrossRefGoogle Scholar
  26. 26.
    Wang C, Sun X, Li C, Wu G, Wang B, Wang Z, Meng Q, Yang L. J Alloys Compd, 2016, 654: 157–162CrossRefGoogle Scholar
  27. 27.
    Jung SC, Jung DS, Choi JW, Han YK. J Phys Chem Lett, 2014, 5: 1283–1288CrossRefGoogle Scholar
  28. 28.
    Xu Y, Swaans E, Basak S, Zandbergen HW, Borsa DM, Mulder FM. Adv Energy Mater, 2015, 6: 1501436CrossRefGoogle Scholar
  29. 29.
    Jangid MK, Vemulapally A, Sonia FJ, Aslam M, Mukhopadhyay A. J Electrochem Soc, 2017, 164: A2559–A2565CrossRefGoogle Scholar
  30. 30.
    Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Electrochim Acta, 2016, 211: 265–272CrossRefGoogle Scholar
  31. 31.
    Legrain F, Manzhos S. J Power Sources, 2015, 274: 65–70CrossRefGoogle Scholar
  32. 32.
    Zhu J, Schwingenschlögl U. 2D Mater, 2016, 3: 035012CrossRefGoogle Scholar
  33. 33.
    Shi L, Zhao TS, Xu A, Xu JB. J Mater Chem A, 2016, 4: 16377–16382CrossRefGoogle Scholar
  34. 34.
    Guo GC, Wang D, Wei XL, Zhang Q, Liu H, Lau WM, Liu LM. J Phys Chem Lett, 2015, 6: 5002–5008CrossRefGoogle Scholar
  35. 35.
    Yang JH, Zhang Y, Yin WJ, Gong XG, Yakobson BI, Wei SH. Nano Lett, 2016, 16: 1110–1117CrossRefGoogle Scholar
  36. 36.
    Zhu Z, Guan J, Liu D, Tománek D. ACS Nano, 2015, 9: 8284–8290CrossRefGoogle Scholar
  37. 37.
    Jiang H, Zhao T, Ren Y, Zhang R, Wu M. Sci Bull, 2017, 62: 572–578CrossRefGoogle Scholar
  38. 38.
    Duveau D, Israel SS, Fullenwarth J, Cunin F, Monconduit L. J Mater Chem A, 2016, 4: 3228–3232CrossRefGoogle Scholar
  39. 39.
    Ni J, Han Y, Gao L, Lu L. Electrochem Commun, 2013, 31: 84–87CrossRefGoogle Scholar
  40. 40.
    Wang G, Ni J, Wang H, Gao L. J Mater Chem A, 2013, 1: 4112–4118CrossRefGoogle Scholar
  41. 41.
    Ni J, Zhang L, Fu S, Savilov SV, Aldoshin SM, Lu L. Carbon, 2015, 92: 15–25CrossRefGoogle Scholar
  42. 42.
    Xiao X, Li X, Zheng S, Shao J, Xue H, Pang H. Adv Mater Interfaces, 2017, 4: 1600798CrossRefGoogle Scholar
  43. 43.
    Yue GH, Zhang XQ, Zhao YC, Xie QS, Zhang XX, Peng DL. RSC Adv, 2014, 4: 21450–21455CrossRefGoogle Scholar
  44. 44.
    Ni J, Li L. Adv Funct Mater, 2018, 28: 1704880CrossRefGoogle Scholar
  45. 45.
    Ni J, Fu S, Yuan Y, Ma L, Jiang Y, Li L, Lu J. Adv Mater, 2018, 30: 1704337CrossRefGoogle Scholar
  46. 46.
    Abel PR, Lin YM, de Souza T, Chou CY, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB. J Phys Chem C, 2013, 117: 18885–18890CrossRefGoogle Scholar
  47. 47.
    Lahiri A, Olschewski M, Gustus R, Borisenko N, Endres F. Phys Chem Chem Phys, 2016, 18: 14782–14786CrossRefGoogle Scholar
  48. 48.
    Ni J, Jiang Y, Wu F, Maier J, Yu Y, Li L. Adv Funct Mater, 2018, 28: 1707179CrossRefGoogle Scholar
  49. 49.
    Kajita T, Itoh T. Electrochim Acta, 2016, 195: 192–198CrossRefGoogle Scholar
  50. 50.
    Kajita T, Itoh T. Phys Chem Chem Phys, 2017, 19: 1003–1009CrossRefGoogle Scholar
  51. 51.
    Li W, Ke L, Wei Y, Guo S, Gan L, Li H, Zhai T, Zhou H. J Mater Chem A, 2017, 5: 4413–4420CrossRefGoogle Scholar
  52. 52.
    He H, Xu M, Yang J, He B, Xie J. Micro Nano Lett, 2017, 12: 777–780CrossRefGoogle Scholar
  53. 53.
    Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C. Nano Lett, 2017, 17: 3830–3836CrossRefGoogle Scholar
  54. 54.
    Nam DH, Kim TH, Hong KS, Kwon HS. ACS Nano, 2014, 8: 11824–11835CrossRefGoogle Scholar
  55. 55.
    Nam DH, Hong KS, Lim SJ, Kim TH, Kwon HS. J Phys Chem C, 2014, 118: 20086–20093CrossRefGoogle Scholar
  56. 56.
    Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Nano Lett, 2013, 13: 3093–3100CrossRefGoogle Scholar
  57. 57.
    Liu J, Wen Y, van Aken PA, Maier J, Yu Y. Nano Lett, 2014, 14: 6387–6392CrossRefGoogle Scholar
  58. 58.
    Zhang R, Wang Z, Ma W, Yu W, Lu S, Liu X. RSC Adv, 2017, 7: 29458–29463CrossRefGoogle Scholar
  59. 59.
    Kalubarme RS, Lee JY, Park CJ. ACS Appl Mater Interfaces, 2015, 7: 17226–17237CrossRefGoogle Scholar
  60. 60.
    Qin B, Zhang H, Diemant T, Geiger D, Raccichini R, Behm RJ, Kaiser U, Varzi A, Passerini S. ACS Appl Mater Interfaces, 2017, 9: 26797–26804CrossRefGoogle Scholar
  61. 61.
    Chen M, Chao D, Liu J, Yan J, Zhang B, Huang Y, Lin J, Shen ZX. Adv Mater, 2017, 27: 1606232Google Scholar
  62. 62.
    Wang K, Huang Y, Qin X, Wang M, Sun X, Yu M. ChemElectroChem, 2017, 4: 2308–2313CrossRefGoogle Scholar
  63. 63.
    Liu M, Liu Y, Zhang Y, Li Y, Zhang P, Yan Y, Liu T. Sci Rep, 2016, 6: 31496CrossRefGoogle Scholar
  64. 64.
    Ao X, Jiang J, Ruan Y, Li Z, Zhang Y, Sun J, Wang C. J Power Sources, 2017, 359: 340–348CrossRefGoogle Scholar
  65. 65.
    Fan L, Li X, Yan B, Feng J, Xiong D, Li D, Gu L, Wen Y, Lawes S, Sun X. Adv Energy Mater, 2016, 6: 1502057CrossRefGoogle Scholar
  66. 66.
    Yang L, Li S, Liu J, Zhu K, Liu S, Lei M. J Mater Chem A, 2017, 5: 1629–1636CrossRefGoogle Scholar
  67. 67.
    He P, Fang Y, Yu XY, Lou XWD. Angew Chem, 2017, 129: 12370–12373CrossRefGoogle Scholar
  68. 68.
    Zhu C, Kopold P, Li W, van Aken PA, Maier J, Yu Y. Adv Sci, 2015, 2: 1500200CrossRefGoogle Scholar
  69. 69.
    Choi J, Kim NR, Lim K, Ku K, Yoon HJ, Kang JG, Kang K, Braun PV, Jin HJ, Yun YS. Small, 2017, 13: 1700767CrossRefGoogle Scholar
  70. 70.
    Sun W, Rui X, Yang D, Sun Z, Li B, Zhang W, Zong Y, Madhavi S, Dou S, Yan Q. ACS Nano, 2015, 9: 11371–11381CrossRefGoogle Scholar
  71. 71.
    Jiang Y, Wei M, Feng J, Ma Y, Xiong S. Energy Environ Sci, 2016, 9: 1430–1438CrossRefGoogle Scholar
  72. 72.
    Tu F, Xu X, Wang P, Si L, Zhou X, Bao J. J Phys Chem C, 2017, 121: 3261–3269CrossRefGoogle Scholar
  73. 73.
    Ni J, Zhao Y, Liu T, Zheng H, Gao L, Yan C, Li L. Adv Energy Mater, 2014, 4: 1400798CrossRefGoogle Scholar
  74. 74.
    Ni J, Li Y. Adv Energy Mater, 2016, 6: 1600278CrossRefGoogle Scholar
  75. 75.
    Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L. Adv Energy Mater, 2016, 6: 1600376CrossRefGoogle Scholar
  76. 76.
    Li W, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX. Adv Mater, 2014, 26: 4037–4042CrossRefGoogle Scholar
  77. 77.
    Fan X, Gao T, Luo C, Wang F, Hu J, Wang C. Nano Energy, 2017, 38: 350–357CrossRefGoogle Scholar
  78. 78.
    Qian J, Xiong Y, Cao Y, Ai X, Yang H. Nano Lett, 2014, 14: 1865–1869CrossRefGoogle Scholar
  79. 79.
    Liu J, Kopold P, Wu C, van Aken PA, Maier J, Yu Y. Energy Environ Sci, 2015, 8: 3531–3538CrossRefGoogle Scholar
  80. 80.
    Wang W, Zhang J, Yu DYW, Li Q. J Power Sources, 2017, 364: 420–425CrossRefGoogle Scholar
  81. 81.
    Xu Y, Peng B, Mulder FM. Adv Energy Mater, 2018, 8: 1701847CrossRefGoogle Scholar
  82. 82.
    Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT. Adv Mater, 2014, 26: 4139–4144CrossRefGoogle Scholar
  83. 83.
    Lan D, Wang W, Li Q. Nano Energy, 2017, 39: 506–512CrossRefGoogle Scholar
  84. 84.
    Ni J, Fu S, Wu C, Zhao Y, Maier J, Yu Y, Li L. Adv Energy Mater, 2016, 6: 1502568CrossRefGoogle Scholar
  85. 85.
    Xia S, Ni J, Savilov SV, Li L. Nano Energy, 2018, 45: 407–412CrossRefGoogle Scholar
  86. 86.
    Ni J, Zhao Y, Chen J, Gao L, Lu L. Electrochem Commun, 2014, 44: 4–7CrossRefGoogle Scholar
  87. 87.
    Liang H, Ni J, Li L. Nano Energy, 2017, 33: 213–220CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physical Science and Technology, Center for Energy Conversion Materials & Physics, Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhouChina

Personalised recommendations