Science China Chemistry

, Volume 61, Issue 8, pp 979–992 | Cite as

Controllable macrocyclic supramolecular assemblies in aqueous solution

  • Yong Chen
  • Feihe Huang
  • Zhan-Ting Li
  • Yu LiuEmail author
Invited Reviews


A series of macrocycles, including crown ethers, cyclodextrins, calixarenes, pillararenes and cucurbiturils, are well known to be able to associate various organic/inorganic/biological guest molecules and ions in their well-defined cyclic cavities to form stable host-guest complexes and supramolecular systems through the cooperative contributions of various non-covalent interactions. When one or more functional groups are attached to the cavity of macrocycles or guest molecules, enhanced and/or controlled host-guest associations may take place, leading to not only improved host-guest binding abilities but also fascinating properties. In this review, some representative contributions in the construction of controllable macrocyclic supramolecular assemblies in aqueous solution are presented with an emphasis on the stimuli-responsive control manner and wide applications of this property.


macrocycle supramolecular assembly stimuli-responsive aqueous solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (91527301, 21432004)


  1. 1(a).
    Liu Z, Nalluri SKM, Stoddart JF. Chem Soc Rev, 2017, 46: 2459–2478CrossRefGoogle Scholar
  2. (b).
    Yu G, Jie K, Huang F. Chem Rev, 2015, 115: 7240–7303CrossRefGoogle Scholar
  3. (c).
    Qi Z, Schalley CA. Acc Chem Res, 2014, 47: 2222–2233CrossRefGoogle Scholar
  4. 2.
    (a) Qu DH, Wang QC, Zhang QW, Ma X, Tian H. Chem Rev, 2015, 115: 7543–7588CrossRefGoogle Scholar
  5. (b).
    Yan X, Wang F, Zheng B, Huang F. Chem Soc Rev, 2012, 41: 6042–6065CrossRefGoogle Scholar
  6. (c).
    Yang YW, Sun YL, Song N. Acc Chem Res, 2014, 47: 1950–1960CrossRefGoogle Scholar
  7. 3.
    (a) Amabilino DB, Stoddart JF. Chem Rev, 1995, 95: 2725–2828CrossRefGoogle Scholar
  8. (b).
    Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Chem Rev, 2015, 115: 10081–10206CrossRefGoogle Scholar
  9. 4.
    Vella SJ, Tiburcio J, Gauld JW, Loeb SJ. Org Lett, 2006, 8: 3421–3424CrossRefGoogle Scholar
  10. 5.
    Murakami Y, Kikuchi J, Hisaeda Y, Hayashida O. Chem Rev, 1996, 96: 721–758CrossRefGoogle Scholar
  11. 6.
    (a) Balzani V, Credi A, Raymo F, Stoddart J. Angew Chem Int Ed, 2000, 39: 3348–3391CrossRefGoogle Scholar
  12. (b).
    Balzani V, Gómez-López M, Stoddart JF. Acc Chem Res, 1998, 31: 405–414CrossRefGoogle Scholar
  13. 7.
    (a) Blanco MJ, Consuel Jiménez M, Chambron JC, Heitz V, Linke M, Sauvage JP. Chem Soc Rev, 1999, 28: 293–305CrossRefGoogle Scholar
  14. (b).
    Sauvage JP. Acc Chem Res, 1998, 31: 611–619CrossRefGoogle Scholar
  15. 8.
    Jiang W, Han M, Zhang HY, Zhang ZJ, Liu Y. Chem Eur J, 2009, 15: 9938–9945CrossRefGoogle Scholar
  16. 9.
    Liu Y, Han M, Zhang HY, Yang LX, Jiang W. Org Lett, 2008, 10: 2873–2876CrossRefGoogle Scholar
  17. 10.
    Suresh M, Mandal AK, Suresh E, Das A. Chem Sci, 2013, 4: 2380–2386CrossRefGoogle Scholar
  18. 11.
    Xu H, Rudkevich DM. J Org Chem, 2004, 69: 8609–8617CrossRefGoogle Scholar
  19. 12.
    (a) Liu Y, Flood AH, Bonvallet PA, Vignon SA, Northrop BH, Tseng HR, Jeppesen JO, Huang TJ, Brough B, Baller M, Magonov S, Solares SD, Goddard WA, Ho CM, Stoddart JF. J Am Chem Soc, 2005, 127: 9745–9759CrossRefGoogle Scholar
  20. (b).
    Aprahamian I, Olsen JC, Trabolsi A, Stoddart JF. Chem Eur J, 2008, 14: 3889–3895CrossRefGoogle Scholar
  21. 13.
    Jiang Q, Zhang HY, Han M, Ding ZJ, Liu Y. Org Lett, 2010, 12: 1728–1731CrossRefGoogle Scholar
  22. 14.
    (a) Gokel GW, Leevy WM, Weber ME. Chem Rev, 2004, 104: 2723–2750CrossRefGoogle Scholar
  23. (b).
    Li J, Yim D, Jang WD, Yoon J. Chem Soc Rev, 2017, 46: 2437–2458CrossRefGoogle Scholar
  24. (c).
    Zheng B, Wang F, Dong S, Huang F. Chem Soc Rev, 2012, 41: 1621–1636CrossRefGoogle Scholar
  25. 15.
    (a) Hoffart DJ, Tiburcio J, de la Torre A, Knight LK, Loeb SJ. Angew Chem Int Ed, 2008, 47: 97–101CrossRefGoogle Scholar
  26. (b).
    Lestini E, Nikitin K, Müller-Bunz H, Fitzmaurice D. Chem Eur J, 2008, 14: 1095–1106CrossRefGoogle Scholar
  27. 16.
    Wang J, Zhang HY, Zhang XJ, Song ZH, Zhao XJ, Liu Y. Chem Commun, 2015, 51: 7329–7332CrossRefGoogle Scholar
  28. 17.
    Wang J, Zhang YM, Zhang XJ, Zhao XJ, Liu Y. Asian. Org Chem, 2015, 4: 244–250CrossRefGoogle Scholar
  29. 18.
    Zhang W, Zhang YM, Li SH, Cui YL, Yu J, Liu Y. Angew Chem Int Ed, 2016, 55: 11452–11456CrossRefGoogle Scholar
  30. 19.
    (a) Lai WF, Rogach AL, Wong WT. Chem Soc Rev, 2017, 46: 6379–6419CrossRefGoogle Scholar
  31. (b).
    Szejtli J. Chem Rev, 1998, 98: 1743–1754CrossRefGoogle Scholar
  32. (c).
    Crini G. Chem Rev, 2014, 114: 10940–10975CrossRefGoogle Scholar
  33. 20.
    Rekharsky MV, Inoue Y. Chem Rev, 1998, 98: 1875–1918CrossRefGoogle Scholar
  34. 21.
    Chen Y, Liu Y. Chem Soc Rev, 2010, 39: 495–505CrossRefGoogle Scholar
  35. 22.
    (a) Uekama K, Hirayama F, Irie T. Chem Rev, 1998, 98: 2045–2076CrossRefGoogle Scholar
  36. (b).
    Zhao Q, Chen Y, Liu Y. Chin Chem Lett, 2018, 29: 84–86CrossRefGoogle Scholar
  37. (c).
    Liang L, Chen Y, Chen XM, Zhang Y, Liu Y. Chin Chem Lett, 2018, 29: 989–991CrossRefGoogle Scholar
  38. 23.
    Breslow R, Dong SD. Chem Rev, 1998, 98: 1997–2012CrossRefGoogle Scholar
  39. 24.
    Li JJ, Chen Y, Yu J, Cheng N, Liu Y. Adv Mater, 2017, 29: 1701905CrossRefGoogle Scholar
  40. 25.
    Zhang YM, Han M, Chen HZ, Zhang Y, Liu Y. Org Lett, 2013, 15: 124–127CrossRefGoogle Scholar
  41. 26.
    Sun HL, Chen Y, Zhao J, Liu Y. Angew Chem Int Ed, 2015, 54: 9376–9380CrossRefGoogle Scholar
  42. 27.
    Sun HL, Chen Y, Han X, Liu Y. Angew Chem Int Ed, 2017, 56: 7062–7065CrossRefGoogle Scholar
  43. 28.
    (a) Guo DS, Liu Y. Chem Soc Rev, 2012, 41: 5907–5921CrossRefGoogle Scholar
  44. (b).
    Gutsche CD, Dhawan B, No KH, Muthukrishnan R. J Am Chem Soc, 1981, 103: 3782–3792CrossRefGoogle Scholar
  45. (c).
    Xue M, Yang Y, Chi X, Zhang Z, Huang F. Acc Chem Res, 2012, 45: 1294–1308CrossRefGoogle Scholar
  46. (d).
    Ogoshi T, Yamagishi TA, Nakamoto Y. Chem Rev, 2016, 116: 7937–8002CrossRefGoogle Scholar
  47. 29.
    Wang K, Guo DS, Zhang HQ, Li D, Zheng XL, Liu Y. J Med Chem, 2009, 52: 6402–6412CrossRefGoogle Scholar
  48. 30.
    Yu G, Zhou X, Zhang Z, Han C, Mao Z, Gao C, Huang F. J Am Chem Soc, 2012, 134: 19489–19497CrossRefGoogle Scholar
  49. 31.
    Chi X, Yu G, Shao L, Chen J, Huang F. J Am Chem Soc, 2016u, 138: 3168–3174CrossRefGoogle Scholar
  50. 32.
    Yu G, Yu W, Shao L, Zhang Z, Chi X, Mao Z, Gao C, Huang F. Adv Funct Mater, 2016, 26: 8999–9008CrossRefGoogle Scholar
  51. 33.
    Yu G, Zhou J, Shen J, Tang G, Huang F. Chem Sci, 2016, 7: 4073–4078CrossRefGoogle Scholar
  52. 34.
    Jie K, Zhou Y, Yao Y, Shi B, Huang F. J Am Chem Soc, 2015, 137: 10472–10475CrossRefGoogle Scholar
  53. 35.
    Yu G, Yu W, Mao Z, Gao C, Huang F. Small, 2015, 11: 919–925CrossRefGoogle Scholar
  54. 36.
    Chi X, Ji X, Xia D, Huang F. J Am Chem Soc, 2015, 137: 1440–1443CrossRefGoogle Scholar
  55. 37.
    Shi B, Jie K, Zhou Y, Zhou J, Xia D, Huang F. J Am Chem Soc, 2016, 138: 80–83CrossRefGoogle Scholar
  56. 38.
    Zhou J, Hua B, Shao L, Feng H, Yu G. Chem Commun, 2016, 52: 5749–5752CrossRefGoogle Scholar
  57. 39.
    Kim K, Selvapalam N, Ko YH, Park KM, Kim D, Kim J. Chem Soc Rev, 2007, 36: 267–279CrossRefGoogle Scholar
  58. 40.
    Yang X, Liu F, Zhao Z, Liang F, Zhang H, Liu S. Chin Chem Lett, 2018, http://doi. org/101016/jcclet201801032Google Scholar
  59. 41.
    Kuok KI, Li S, Wyman IW, Wang R. Ann NYAcad Sci, 2017, 1398: 108–119CrossRefGoogle Scholar
  60. 42.
    Tian J, Zhang L, Wang H, Zhang DW, Li ZT. Supramol Chem, 2016, 28: 769–783CrossRefGoogle Scholar
  61. 43.
    Ni XL, Xiao X, Cong H, Zhu QJ, Xue SF, Tao Z. Acc Chem Res, 2014, 47: 1386–1395CrossRefGoogle Scholar
  62. 44.
    Bai D, Wang X, Gao Z, Qiu S, Tao Z, Zhang J, Xiao X. Chin. Org Chem, 2017, 37: 2022–2027CrossRefGoogle Scholar
  63. 45.
    Yin ZJ, Wu ZQ, Lin F, Qi QY, Xu XN, Zhao X. Chin Chem Lett, 2017, 28: 1167–1171CrossRefGoogle Scholar
  64. 46.
    Wu W, Song S, Cui X, Sun T, Zhang JX, Ni XL. Chin Chem Lett, 2018, 29: 95–98CrossRefGoogle Scholar
  65. 47.
    Li B, Li X, Sun X, Wang N. Chin. Chem, 2016, 34: 1114–1120CrossRefGoogle Scholar
  66. 48.
    Li TT, Wen LL, Ji HL, Liu FY, Sun SG. Chin Chem Lett, 2017, 28: 463–466CrossRefGoogle Scholar
  67. 49.
    Zhang M, Gao J, Chen J, Cai M, Jiang J, Tian Z, Wang H. Sci China Chem, 2016, 59: 848–852CrossRefGoogle Scholar
  68. 50.
    Cui XW, Chen SY, Wang CZ, Zhao WX, Sun T, Ni XL, Zhang YQ, Tao Z. Chin Chem Lett, 2016, 27: 173–177CrossRefGoogle Scholar
  69. 51.
    Liu Y, Yang H, Wang Z, Zhang X. Chem Asian J, 2013, 8: 1626–1632CrossRefGoogle Scholar
  70. 52.
    Zhang KD, Tian J, Hanifi D, Zhang Y, Sue ACH, Zhou TY, Zhang L, Zhao X, Liu Y, Li ZT. J Am Chem Soc, 2013, 135: 17913–17918CrossRefGoogle Scholar
  71. 53.
    Zhang L, Zhou TY, Tian J, Wang H, Zhang DW, Zhao X, Liu Y, Li ZT. Polym Chem, 2014, 5: 4715–4721CrossRefGoogle Scholar
  72. 54.
    Xu SQ, Zhang X, Nie CB, Pang ZF, Xu XN, Zhao X. Chem Commun, 2015, 51: 16417–16420CrossRefGoogle Scholar
  73. 55.
    Pfeffermann M, Dong R, Graf R, Zajaczkowski W, Gorelik T, Pisula W, Narita A, Müllen K, Feng X. J Am Chem Soc, 2015, 137: 14525–14532CrossRefGoogle Scholar
  74. 56.
    Zhang Y, Zhan TG, Zhou TY, Qi QY, Xu XN, Zhao X. Chem Commun, 2016, 52: 7588–7591CrossRefGoogle Scholar
  75. 57.
    Lee HJ, Kim HJ, Lee EC, Kim J, Park SY. Chem Asian J, 2018, 13: 390–394CrossRefGoogle Scholar
  76. 58.
    Lin Q, Fan YQ, Mao PP, Liu L, Liu J, Zhang YM, Yao H, Wei TB. Chem Eur J, 2018, 24: 777–783CrossRefGoogle Scholar
  77. 59.
    Li Y, Dong Y, Miao X, Ren Y, Zhang B, Wang P, Yu Y, Li B, Isaacs L, Cao L. Angew Chem Int Ed, 2018, 57: 729–733CrossRefGoogle Scholar
  78. 60.
    H Wang, D W Zhang, Z TLi. Acta Polym Sin, 2017, 1: 19–26Google Scholar
  79. 61.
    Tian J, Chen L, Zhang DW, Liu Y, Li ZT. Chem Commun, 2016, 52: 6351–6362CrossRefGoogle Scholar
  80. 62.
    Wang H, Zhang D, Zhao X, Li Z. Acta Chim Sin, 2015, 73: 471–479CrossRefGoogle Scholar
  81. 63.
    Zhang L, Jia Y, Wang H, Zhang DW, Zhang Q, Liu Y, Li ZT. Polym Chem, 2016, 7: 1861–1865CrossRefGoogle Scholar
  82. 64.
    Zhang X, Nie CB, Zhou TY, Qi QY, Fu J, Wang XZ, Dai L, Chen Y, Zhao X. Polym Chem, 2015, 6: 1923–1927CrossRefGoogle Scholar
  83. 65.
    Madasamy K, Shanmugam VM, Velayutham D, Kathiresan M. Sci Rep, 2018, 8: 1354CrossRefGoogle Scholar
  84. 66.
    Tian J, Zhou TY, Zhang SC, Aloni S, Altoe MV, Xie SH, Wang H, Zhang DW, Zhao X, Liu Y, Li ZT. Nat Commun, 2014, 5: 5574–5584CrossRefGoogle Scholar
  85. 67.
    Yu SB, Qi Q, Yang B, Wang H, Zhang DW, Liu Y, Li ZT. Small, 2018, 14: 1801037CrossRefGoogle Scholar
  86. 68.
    Tian J, Yao C, Yang WL, Zhang L, Zhang DW, Wang H, Zhang F, Liu Y, Li ZT. Chin Chem Lett, 2017, 28: 798–806CrossRefGoogle Scholar
  87. 69.
    Yao C, Tian J, Wang H, Zhang DW, Liu Y, Zhang F, Li ZT. Chin Chem Lett, 2017, 28: 893–899CrossRefGoogle Scholar
  88. 70.
    Wu YP, Yang B, Tian J, Yu SB, Wang H, Zhang DW, Liu Y, Li ZT. Chem Commun, 2017, 53: 13367–13370CrossRefGoogle Scholar
  89. 71.
    Tian J, Xu ZY, Zhang DW, Wang H, Xie SH, Xu DW, Ren YH, Wang H, Liu Y, Li ZT. Nat Commun, 2016, 7: 11580CrossRefGoogle Scholar
  90. 72.
    Li XF, Yu SB, Yang B, Tian J, Wang H, Zhang DW, Liu Y, Li ZT. Sci China Chem, 2018, https://doi. org/10. 1007/s11426-018-9234-2Google Scholar
  91. 73.
    Tian J, Wang H, Zhang DW, Liu Y, Li ZT. Natl Sci Rev, 2017, 4: 426–436CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yong Chen
    • 1
    • 2
  • Feihe Huang
    • 3
  • Zhan-Ting Li
    • 4
  • Yu Liu
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai UniversityTianjinChina
  2. 2.Co-Innovation Center of Chemistry and Chemical Engineering (Tianjin)TianjinChina
  3. 3.State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of ChemistryZhejiang UniversityHangzhouChina
  4. 4.Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)Fudan UniversityShanghaiChina

Personalised recommendations