Advertisement

Science China Chemistry

, Volume 61, Issue 8, pp 1004–1013 | Cite as

Recent advances in Ni−Al bimetallic catalysis for unreactive bond transformation

  • Yin-Xia Wang
  • Mengchun Ye
Feature Articles
  • 99 Downloads

Abstract

Ni−Al bimetallic catalysis proves to be an efficient catalytic strategy for unreactive bond transformations. Recently, chiral bifunctional ligands, especially amphoteric secondary phosphine oxide (SPO) ligand, are used for a more powerful synergistic effect in the bimetal-catalyzed reactions, providing not only milder reaction conditions and higher reactivity but also excellent reaction selectivity. Herein, we give a brief review on the development of Ni−Al bimetallic catalytic system and highlight recent advances in enantioselective Ni−Al bimetallic catalysis for unreactive bond transformation.

Keywords

nickel aluminum bimetallic catalysis SPO ligand unreactive bond 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21672107) and the “1000-Youth Talents Plan”.

References

  1. 1.
    (a) D’Souza DM, Müller TJJ. Chem Soc Rev. 2007, 36: 1095–1108Google Scholar
  2. (b).
    Das S, Brudvig GW, Crabtree RH. Chem Commun. 2008, 127: 413–424Google Scholar
  3. (c).
    Diez-Gonzalez S, Marion N, Nolan SP. Chem Rev. 2009, 109: 3612–3676Google Scholar
  4. (d).
    Zhong C, Shi X. Eur J Org Chem. 2010, 2010: 2999–3025Google Scholar
  5. (e).
    Du Z, Shao Z. Chem Soc Rev. 2013, 42: 1337–1378Google Scholar
  6. (f).
    Hu Y, Wang C. Sci China Chem. 2016, 59: 1301–1305Google Scholar
  7. (g).
    Li X, He X, Liu X, He LN. Sci China Chem. 2017, 60: 841–852Google Scholar
  8. 2.
    (a) Goossen LJ, Goossen K, Stanciu C. Angew Chem Int Ed. 2009, 48: 3569–3571Google Scholar
  9. (b).
    Su B, Cao ZC, Shi ZJ. Acc Chem Res. 2015, 48: 886–896Google Scholar
  10. (c).
    Wang Q, Su Y, Li L, Huang H. Chem Soc Rev. 2016, 45: 1257–1272Google Scholar
  11. (d).
    Tobisu M, Chatani N. Acc Chem Res. 2015, 48: 1717–1726Google Scholar
  12. (e).
    Gao Y, Ji CL, Hong X. Sci China Chem. 2017, 60: 1413–1424Google Scholar
  13. (f).
    Colby DA, Bergman RG, Ellman JA. Chem Rev. 2010, 110: 624–655Google Scholar
  14. (g).
    Labinger JA, Bercaw JE. Nature. 2002, 417: 507–514Google Scholar
  15. (h).
    Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem Soc Rev. 2011, 40: 4740–4761Google Scholar
  16. 3.
    (a) Rousseau G, Breit B. Angew Chem Int Ed. 2011, 50: 2450–2494Google Scholar
  17. (b).
    Rouquet G, Chatani N. Angew Chem Int Ed. 2013, 52: 11726–11743Google Scholar
  18. (c).
    Corbet M, De Campo F. Angew Chem Int Ed. 2013, 52: 9896–9898Google Scholar
  19. (d).
    Song G, Li X. Acc Chem Res. 2015, 48: 1007–1020Google Scholar
  20. (e).
    Zhu RY, Farmer ME, Chen YQ, Yu JQ. Angew Chem Int Ed. 2016, 55: 10578–10599Google Scholar
  21. (f).
    He J, Wasa M, Chan KSL, Shao Q, Yu JQ. Chem Rev. 2017, 117: 8754–8786Google Scholar
  22. 4.
    (a) Lyons TW, Sanford MS. Chem Rev. 2010, 110: 1147–1169Google Scholar
  23. (b).
    Engle KM, Yu JQ. J Org Chem. 2013, 78: 8927–8955Google Scholar
  24. (c).
    Ye B, Cramer N. Acc Chem Res. 2015, 48: 1308–1318Google Scholar
  25. (d).
    Saint-Denis TG, Zhu RY, Chen G, Wu QF, Yu JQ. Science. 2018, 359: eaao4798Google Scholar
  26. 5.
    (a) Biswas J, Maxwell IE. Appl Catal. 1990, 63: 197–258Google Scholar
  27. (b).
    Otterstedt JE, Gevert SB, Jäås SG, Menon PG. Appl Catal. 1986, 22: 159–179Google Scholar
  28. 6.
    (a) Fu J, Huo X, Li B, Zhang W. Org Biomol Chem. 2017, 15: 9747–9759Google Scholar
  29. (b).
    Pye DR, Mankad NP. Chem Sci. 2017, 8: 1705–1718Google Scholar
  30. (c).
    Mankad NP. Chem Eur J. 2016, 22: 5822–5829Google Scholar
  31. (d).
    Hetterscheid DGH, Chikkali SH, de Bruin B, Reek JNH. ChemCatChem. 2013, 5: 2785–2793Google Scholar
  32. (e).
    Park J, Hong S. Chem Soc Rev. 2012, 41: 6931–6943Google Scholar
  33. (f).
    Pérez-Temprano MH, Casares JA, Espinet P. Chem Eur J. 2012, 18: 1864–1884Google Scholar
  34. (g).
    Matsunaga S, Shibasaki M. Bull Chem Soc Jpn. 2008, 81: 60–75Google Scholar
  35. (h).
    van den Beuken EK, Feringa BL. Tetrahedron. 1998, 54: 12985–13011Google Scholar
  36. (i).
    Rowlands GJ. Tetrahedron. 2001, 57: 1865–1882Google Scholar
  37. 7.
    (a) Trost BM, Toste FD, Pinkerton AB. Chem Rev. 2001, 101: 2067–2096Google Scholar
  38. (b).
    Bolm C, Legros J, Le Paih J, Zani L. Chem Rev. 2004, 104: 6217–6254Google Scholar
  39. (c).
    Yin L, Liebscher J. Chem Rev. 2007, 107: 133–173Google Scholar
  40. (d).
    Monnier F, Taillefer M. Angew Chem Int Ed. 2009, 48: 6954–6971Google Scholar
  41. (e).
    Rodríguez N, Goossen LJ. Chem Soc Rev. 2011, 40: 5030–5048Google Scholar
  42. (f).
    Yeung CS, Dong VM. Chem Rev. 2011, 111: 1215–1292Google Scholar
  43. 8.
    (a) Jun CH. Chem Soc Rev. 2004, 33: 610–618Google Scholar
  44. (b).
    Murakami M, Matsuda T. Chem Commun. 2011, 47: 1100–1105Google Scholar
  45. (c).
    Dermenci A, Coe JW, Dong G. Org Chem Front. 2014, 1: 567–581Google Scholar
  46. (d).
    Souillart L, Cramer N. Chem Rev. 2015, 115: 9410–9464Google Scholar
  47. (e).
    Murakami M, Ishida N. J Am Chem Soc. 2016, 138: 13759–13769Google Scholar
  48. (f).
    Chen P, Billett BA, Tsukamoto T, Dong G. ACS Catal. 2017, 7: 1340–1360Google Scholar
  49. (g).
    Fumagalli G, Stanton S, Bower JF. Chem Rev. 2017, 117: 9404–9432Google Scholar
  50. (h).
    Chen F, Wang T, Jiao N. Chem Rev. 2014, 114: 8613–8661Google Scholar
  51. 9.
    (a) Rubin M, Rubina M, Gevorgyan V. Chem Rev. 2007, 107: 3117–3179Google Scholar
  52. (b).
    Seiser T, Cramer N. Org Biomol Chem. 2009, 7: 2835–2840Google Scholar
  53. (c).
    Tipper CFH. J Chem Soc. 1955, 2045–2046Google Scholar
  54. (d).
    Wiberg KB, Fenoglio RA. J Am Chem Soc. 1968, 90: 3395–3397Google Scholar
  55. 10.
    (a) William Suggs J, Cox SD. J Organomet Chem. 1981, 221: 199–201Google Scholar
  56. (b).
    Suggs JW, Jun CH. J Am Chem Soc. 1984, 106: 3054–3056Google Scholar
  57. (c).
    Jun CH, Lee H. J Am Chem Soc. 1999, 121: 880–881Google Scholar
  58. (d).
    Jun CH, Lee H, Lim SG. J Am Chem Soc. 2001, 123: 751–752Google Scholar
  59. (e).
    Dreis AM, Douglas CJ. J Am Chem Soc. 2009, 131: 412–413Google Scholar
  60. (f).
    Wang J, Chen W, Zuo S, Liu L, Zhang X, Wang J. Angew Chem Int Ed. 2012, 51: 12334–12338Google Scholar
  61. 11.
    (a) Tobisu M, Chatani N. Chem Soc Rev. 2008, 37: 300–307Google Scholar
  62. (b).
    Kou X, Fan J, Tong X, Shen Z. Chin J Org Chem. 2013, 33: 1407Google Scholar
  63. (c).
    Chen F, Wang T, Jiao N. Chem Rev. 2014, 114: 8613–8661Google Scholar
  64. (d).
    Wen Q, Lu P, Wang Y. RSC Adv. 2014, 4: 47806–47826Google Scholar
  65. (e).
    Murahashi S, Naota T, Nakajima N. J Org Chem. 1986, 51: 898–901Google Scholar
  66. (f).
    Taw FL, White PS, Bergman RG, Brookhart M. J Am Chem Soc. 2002, 124: 4192–4193Google Scholar
  67. (g).
    Nakao Y, Oda S, Hiyama T. J Am Chem Soc. 2004, 126: 13904–13905Google Scholar
  68. (h).
    Nakao Y, Yukawa T, Hirata Y, Oda S, Satoh J, Hiyama T. J Am Chem Soc. 2006, 128: 7116–7117Google Scholar
  69. (i).
    Tobisu M, Kita Y, Chatani N. J Am Chem Soc. 2006, 128: 8152–8153Google Scholar
  70. 12.
    (a) DuPont. Chem Eng News. 1971, 49: 30–31Google Scholar
  71. (b).
    Huthmacher K, Krill S. In: Cornils B, Hermann WA, eds. Applied Homogeneous Catalysis with Organometallic Compounds. 2nd ed. Weinheim: Wiley-VCH. 2002Google Scholar
  72. 13.
    (a) Nakao Y, Hiyama T. J Syn Org Chem Jpn. 2007, 65: 999–1008Google Scholar
  73. (b).
    Nakao Y, Hiyama T. Pure Appl Chem. 2008, 80: 1097–1107Google Scholar
  74. (c).
    Yada A, Yukawa T, Idei H, Nakao Y, Hiyama T. Bull Chem Soc Jpn. 2010, 83: 619–634Google Scholar
  75. (d).
    Nakao Y. Bull Chem Soc Jpn. 2012, 85: 731–745Google Scholar
  76. (e).
    Brunkan NM, Brestensky DM, Jones WD. J Am Chem Soc. 2004, 126: 3627–3641Google Scholar
  77. (f).
    Nakao Y, Hirata Y, Tanaka M, Hiyama T. Angew Chem Int Ed. 2008, 47: 385–387Google Scholar
  78. (g).
    Watson MP, Jacobsen EN. J Am Chem Soc. 2008, 130: 12594–12595Google Scholar
  79. (h).
    Hirata Y, Yada A, Morita E, Nakao Y, Hiyama T, Ohashi M, Ogoshi S. J Am Chem Soc. 2010, 132: 10070–10077Google Scholar
  80. (i).
    Minami Y, Yoshiyasu H, Nakao Y, Hiyama T. Angew Chem Int Ed. 2013, 52: 883–887Google Scholar
  81. (j).
    Miyazaki Y, Ohta N, Semba K, Nakao Y. J Am Chem Soc. 2014, 136: 3732–3735Google Scholar
  82. (k).
    Rondla NR, Ogilvie JM, Pan Z, Douglas CJ. Chem Commun. 2014, 50: 8974–8977Google Scholar
  83. 14.
    Nakao Y, Yada A, Ebata S, Hiyama T. J Am Chem Soc. 2007, 129: 2428–2429Google Scholar
  84. 15.
    Nakao Y, Ebata S, Yada A, Hiyama T, Ikawa M, Ogoshi S. J Am Chem Soc. 2008, 130: 12874–12875Google Scholar
  85. 16.
    (a) Hirata Y, Yukawa T, Kashihara N, Nakao Y, Hiyama T. J Am Chem Soc. 2009, 131: 10964–10973Google Scholar
  86. (b).
    Yada A, Yukawa T, Nakao Y, Hiyama T. Chem Commun. 2009, 107: 3931–3933Google Scholar
  87. (c).
    Nakao Y, Yada A, Hiyama T. J Am Chem Soc. 2010, 132: 10024–10026Google Scholar
  88. (d).
    Yada A, Ebata S, Idei H, Zhang D, Nakao Y, Hiyama T. Bull Chem Soc Jpn. 2010, 83: 1170–1184Google Scholar
  89. (e).
    Yamada Y, Ebata S, Hiyama T, Nakao Y. Tetrahedron. 2015, 71: 4413–4417Google Scholar
  90. 17.
    (a) Huang J, Haar CM, Nolan SP, Marcone JE, Moloy KG. Organometallics. 1999, 18: 297–299Google Scholar
  91. (b).
    Shen Q, Hartwig JF. J Am Chem Soc. 2007, 129: 7734–7735Google Scholar
  92. 18.
    Nakai K, Kurahashi T, Matsubara S. J Am Chem Soc. 2011, 133: 11066–11068Google Scholar
  93. 9.
    (a) Nakai K, Kurahashi T, Matsubara S. Org Lett. 2013, 15: 856–859Google Scholar
  94. (b).
    Nakai K, Kurahashi T, Matsubara S. Tetrahedron. 2015, 71: 4512–4517Google Scholar
  95. 20.
    (a) Patra T, Agasti S, Akanksha S, Maiti D. Chem Commun. 2013, 49: 69–71Google Scholar
  96. (b).
    Patra T, Agasti S, Modak A, Maiti D. Chem Commun. 2013, 49: 8362–8364Google Scholar
  97. 21.
    Romeder G. Hydrogen Cyanide. e-EROS Encyclopedia of Reagents for Organic Synthesis. 2000Google Scholar
  98. 22.
    (a) Fang X, Yu P, Morandi B. Science. 2016, 351: 832–836Google Scholar
  99. (b).
    Yu P, Morandi B. Angew Chem Int Ed. 2017, 56: 15693–15697Google Scholar
  100. (c).
    Fang X, Yu P, Prina Cerai G, Morandi B. Chem Eur J. 2016, 22: 15629–15633Google Scholar
  101. 23.
    Tamaki T, Ohashi M, Ogoshi S. Angew Chem Int Ed. 2011, 50: 12067–12070Google Scholar
  102. 24.
    (a) Nakao Y, Kanyiva KS, Hiyama T. J Am Chem Soc. 2008, 130: 2448–2449Google Scholar
  103. (b).
    Yang L, Semba K, Nakao Y. Angew Chem Int Ed. 2017, 56: 4853–4857Google Scholar
  104. (c).
    Hara N, Saito T, Semba K, Kuriakose N, Zheng H, Sakaki S, Nakao Y. J Am Chem Soc. 2018, 140: 7070–7073Google Scholar
  105. 25.
    (a) Nakao Y, Idei H, Kanyiva KS, Hiyama T. J Am Chem Soc. 2009, 131: 5070–5071Google Scholar
  106. (b).
    Kanyiva KS, Löbermann F, Nakao Y, Hiyama T. Tetrahedron Lett. 2009, 50: 3463–3466Google Scholar
  107. (c).
    Nakao Y, Idei H, Kanyiva KS, Hiyama T. J Am Chem Soc. 2009, 131: 15996–15997Google Scholar
  108. (d).
    Nakao Y, Yamada Y, Kashihara N, Hiyama T. J Am Chem Soc. 2010, 132: 13666–13668Google Scholar
  109. (e).
    Tsai CC, Shih WC, Fang CH, Li CY, Ong TG,Ya. GPA. J Am Chem Soc. 2010, 132: 11887–11889Google Scholar
  110. (f).
    Nakao Y, Morita E, Idei H, Hiyama T. J Am Chem Soc. 2011, 133: 3264–3267Google Scholar
  111. (g).
    Miyazaki Y, Yamada Y, Nakao Y, Hiyama T. Chem Lett. 2012, 41: 298–300Google Scholar
  112. (h).
    Shih WC, Chen WC, Lai YC, Yu MS, Ho JJ, Yap GPA, Ong TG. Org Lett. 2012, 14: 2046–2049Google Scholar
  113. (i).
    Tamura R, Yamada Y, Nakao Y, Hiyama T. Angew Chem. 2012, 124: 5777–5780Google Scholar
  114. (j).
    Liu S, Sawicki J, Driver TG. Org Lett. 2012, 14: 3744–3747Google Scholar
  115. (k).
    Lee WC, Wang CH, Lin YH, Shih WC, Ong TG. Org Lett. 2013, 15: 5358–5361Google Scholar
  116. (l).
    Yu MS, Lee WC, Chen CH, Tsai FY, Ong TG. Org Lett. 2014, 16: 4826–4829Google Scholar
  117. (m).
    Lee WC, Shih WC, Wang TH, Liu Y, Yap GPA, Ong TG. Tetrahedron. 2015, 71: 4460–4464Google Scholar
  118. (n).
    Lee WC, Chen CH, Liu CY, Yu MS, Lin YH, Ong TG. Chem Commun. 2015, 51: 17104–17107Google Scholar
  119. (o).
    Okumura S, Tang S, Saito T, Semba K, Sakaki S, Nakao Y. J Am Chem Soc. 2016, 138: 14699–14704Google Scholar
  120. (p).
    Okumura S, Nakao Y. Org Lett. 2017, 19: 584–587Google Scholar
  121. (q).
    Inoue F, Saito T, Semba K, Nakao Y. Chem Commun. 2017, 53: 4497–4500Google Scholar
  122. (r).
    Okumura S, Komine T, Shigeki E, Semba K, Nakao Y. Angew Chem Int Ed. 2018, 57: 929–932Google Scholar
  123. 26.
    Donets PA, Cramer N. Angew Chem. 2015, 127: 643–647Google Scholar
  124. 27.
    Miura T, Yamauchi M, Murakami M. Chem Commun. 2009, 36: 1470–1471Google Scholar
  125. 28.
    Kajita Y, Matsubara S, Kurahashi T. J Am Chem Soc. 2008, 130: 6058–6059Google Scholar
  126. 29.
    Shiba T, Kurahashi T, Matsubara S. J Am Chem Soc. 2013, 135: 13636–13639Google Scholar
  127. 30.
    Nakai K, Kurahashi T, Matsubara S. Chem Lett. 2013, 42: 1238–1240Google Scholar
  128. 31.
    (a) Sergeev AG, Hartwig JF. Science. 2011, 332: 439–443Google Scholar
  129. (b).
    Sergeev AG, Webb JD, Hartwig JF. J Am Chem Soc. 2012, 134: 20226–20229Google Scholar
  130. 32.
    (a) Hsieh JC, Ebata S, Nakao Y, Hiyama T. Synlett. 2010, 11: 1709–1711Google Scholar
  131. (b).
    Watson MP, Jacobsen EN. J Am Chem Soc. 2008, 130: 12594–12595Google Scholar
  132. 33.
    Diesel J, Finogenova AM, Cramer N. J Am Chem Soc. 2018, 140: 4489–4493Google Scholar
  133. 34.
    (a) Yoshikai N, Mashima H, Nakamura E. J Am Chem Soc. 2005, 127: 17978–17979Google Scholar
  134. (b).
    Yoshikai N, Matsuda H, Nakamura E. J Am Chem Soc. 2009, 131: 9590–9599Google Scholar
  135. (c).
    Ackermann L, Althammer A. Chem Unserer Zeit. 2009, 43: 74–83Google Scholar
  136. (d).
    Jin Z, Li YJ, Ma YQ, Qiu LL, Fang JX. Chem Eur J. 2012, 18: 446–450Google Scholar
  137. 35.
    For related reviews on SPO ligands, see: (a) Dubrovina NV, Börner A. Angew Chem Int Ed. 2004, 43: 5883–5886Google Scholar
  138. (b).
    Ackermann L, Born R, Spatz JH, Althammer A, Gschrei CJ. Pure Appl Chem. 2006, 78: 209–214Google Scholar
  139. (c).
    Nemoto T, Hamada Y. Chem Record. 2007, 7: 150–158Google Scholar
  140. (d).
    Nemoto T. Chem Pharm Bull. 2008, 56: 1213–1228Google Scholar
  141. (e).
    Ackermann L. Isr J Chem. 2010, 50: 652–663Google Scholar
  142. (f).
    Nemoto T, Hamada Y. Tetrahedron. 2011, 67: 667–687Google Scholar
  143. (g).
    Shaikh TM, Weng CM, Hong FE. Coordin Chem Rev. 2012, 256: 771–803Google Scholar
  144. (h).
    For recent enantioselective examples, see: (h) Achard T. Chimia. 2016, 70: 8–19Google Scholar
  145. (i).
    Dong K, Wang Z, Ding K. J Am Chem Soc. 2012, 134: 12474–12477Google Scholar
  146. (j).
    Dong K, Li Y, Wang Z, Ding K. Angew Chem Int Ed. 2013, 52: 14191–14195Google Scholar
  147. (k).
    Chen C, Zhang Z, Jin S, Fan X, Geng M, Zhou Y, Wen S, Wang X, Chung LW, Dong XQ, Zhang X. Angew Chem Int Ed. 2017, 56: 6808–6812Google Scholar
  148. 36.
    Donets PA, Cramer N. J Am Chem Soc. 2013, 135: 11772–11775Google Scholar
  149. 37.
    Liu QS, Wang DY, Yang ZJ, Luan YX, Yang JF, Li JF, Pu YG, Ye M. J Am Chem Soc. 2017, 139: 18150–18153Google Scholar
  150. 38.
    Wang YX, Qi SL, Luan YX, Han XW, Wang S, Chen H, Ye M. J Am Chem Soc. 2018, 140: 5360–5364Google Scholar
  151. 39.
    Tan KL, Bergman RG, Ellman JA. J Am Chem Soc. 2001, 123: 2685–2686Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory and Institute of Elemento-Organic ChemistryNankai UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations