Advertisement

Science China Chemistry

, Volume 61, Issue 8, pp 1004–1013 | Cite as

Recent advances in Ni−Al bimetallic catalysis for unreactive bond transformation

  • Yin-Xia Wang
  • Mengchun Ye
Feature Articles
  • 148 Downloads

Abstract

Ni−Al bimetallic catalysis proves to be an efficient catalytic strategy for unreactive bond transformations. Recently, chiral bifunctional ligands, especially amphoteric secondary phosphine oxide (SPO) ligand, are used for a more powerful synergistic effect in the bimetal-catalyzed reactions, providing not only milder reaction conditions and higher reactivity but also excellent reaction selectivity. Herein, we give a brief review on the development of Ni−Al bimetallic catalytic system and highlight recent advances in enantioselective Ni−Al bimetallic catalysis for unreactive bond transformation.

Keywords

nickel aluminum bimetallic catalysis SPO ligand unreactive bond 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21672107) and the “1000-Youth Talents Plan”.

References

  1. 1.
    (a) D’Souza DM, Müller TJJ. Chem Soc Rev. 2007, 36: 1095–1108CrossRefPubMedGoogle Scholar
  2. (b).
    Das S, Brudvig GW, Crabtree RH. Chem Commun. 2008, 127: 413–424CrossRefGoogle Scholar
  3. (c).
    Diez-Gonzalez S, Marion N, Nolan SP. Chem Rev. 2009, 109: 3612–3676CrossRefPubMedGoogle Scholar
  4. (d).
    Zhong C, Shi X. Eur J Org Chem. 2010, 2010: 2999–3025CrossRefGoogle Scholar
  5. (e).
    Du Z, Shao Z. Chem Soc Rev. 2013, 42: 1337–1378CrossRefPubMedGoogle Scholar
  6. (f).
    Hu Y, Wang C. Sci China Chem. 2016, 59: 1301–1305CrossRefGoogle Scholar
  7. (g).
    Li X, He X, Liu X, He LN. Sci China Chem. 2017, 60: 841–852CrossRefGoogle Scholar
  8. 2.
    (a) Goossen LJ, Goossen K, Stanciu C. Angew Chem Int Ed. 2009, 48: 3569–3571CrossRefGoogle Scholar
  9. (b).
    Su B, Cao ZC, Shi ZJ. Acc Chem Res. 2015, 48: 886–896CrossRefPubMedGoogle Scholar
  10. (c).
    Wang Q, Su Y, Li L, Huang H. Chem Soc Rev. 2016, 45: 1257–1272CrossRefPubMedGoogle Scholar
  11. (d).
    Tobisu M, Chatani N. Acc Chem Res. 2015, 48: 1717–1726CrossRefPubMedGoogle Scholar
  12. (e).
    Gao Y, Ji CL, Hong X. Sci China Chem. 2017, 60: 1413–1424CrossRefGoogle Scholar
  13. (f).
    Colby DA, Bergman RG, Ellman JA. Chem Rev. 2010, 110: 624–655CrossRefPubMedPubMedCentralGoogle Scholar
  14. (g).
    Labinger JA, Bercaw JE. Nature. 2002, 417: 507–514CrossRefPubMedGoogle Scholar
  15. (h).
    Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem Soc Rev. 2011, 40: 4740–4761CrossRefGoogle Scholar
  16. 3.
    (a) Rousseau G, Breit B. Angew Chem Int Ed. 2011, 50: 2450–2494CrossRefGoogle Scholar
  17. (b).
    Rouquet G, Chatani N. Angew Chem Int Ed. 2013, 52: 11726–11743CrossRefGoogle Scholar
  18. (c).
    Corbet M, De Campo F. Angew Chem Int Ed. 2013, 52: 9896–9898CrossRefGoogle Scholar
  19. (d).
    Song G, Li X. Acc Chem Res. 2015, 48: 1007–1020CrossRefPubMedGoogle Scholar
  20. (e).
    Zhu RY, Farmer ME, Chen YQ, Yu JQ. Angew Chem Int Ed. 2016, 55: 10578–10599CrossRefGoogle Scholar
  21. (f).
    He J, Wasa M, Chan KSL, Shao Q, Yu JQ. Chem Rev. 2017, 117: 8754–8786CrossRefPubMedGoogle Scholar
  22. 4.
    (a) Lyons TW, Sanford MS. Chem Rev. 2010, 110: 1147–1169CrossRefPubMedGoogle Scholar
  23. (b).
    Engle KM, Yu JQ. J Org Chem. 2013, 78: 8927–8955CrossRefPubMedPubMedCentralGoogle Scholar
  24. (c).
    Ye B, Cramer N. Acc Chem Res. 2015, 48: 1308–1318CrossRefPubMedGoogle Scholar
  25. (d).
    Saint-Denis TG, Zhu RY, Chen G, Wu QF, Yu JQ. Science. 2018, 359: eaao4798CrossRefPubMedGoogle Scholar
  26. 5.
    (a) Biswas J, Maxwell IE. Appl Catal. 1990, 63: 197–258CrossRefGoogle Scholar
  27. (b).
    Otterstedt JE, Gevert SB, Jäås SG, Menon PG. Appl Catal. 1986, 22: 159–179CrossRefGoogle Scholar
  28. 6.
    (a) Fu J, Huo X, Li B, Zhang W. Org Biomol Chem. 2017, 15: 9747–9759CrossRefPubMedGoogle Scholar
  29. (b).
    Pye DR, Mankad NP. Chem Sci. 2017, 8: 1705–1718CrossRefPubMedPubMedCentralGoogle Scholar
  30. (c).
    Mankad NP. Chem Eur J. 2016, 22: 5822–5829CrossRefPubMedGoogle Scholar
  31. (d).
    Hetterscheid DGH, Chikkali SH, de Bruin B, Reek JNH. ChemCatChem. 2013, 5: 2785–2793CrossRefGoogle Scholar
  32. (e).
    Park J, Hong S. Chem Soc Rev. 2012, 41: 6931–6943CrossRefPubMedGoogle Scholar
  33. (f).
    Pérez-Temprano MH, Casares JA, Espinet P. Chem Eur J. 2012, 18: 1864–1884CrossRefPubMedGoogle Scholar
  34. (g).
    Matsunaga S, Shibasaki M. Bull Chem Soc Jpn. 2008, 81: 60–75CrossRefGoogle Scholar
  35. (h).
    van den Beuken EK, Feringa BL. Tetrahedron. 1998, 54: 12985–13011CrossRefGoogle Scholar
  36. (i).
    Rowlands GJ. Tetrahedron. 2001, 57: 1865–1882CrossRefGoogle Scholar
  37. 7.
    (a) Trost BM, Toste FD, Pinkerton AB. Chem Rev. 2001, 101: 2067–2096CrossRefPubMedGoogle Scholar
  38. (b).
    Bolm C, Legros J, Le Paih J, Zani L. Chem Rev. 2004, 104: 6217–6254CrossRefPubMedGoogle Scholar
  39. (c).
    Yin L, Liebscher J. Chem Rev. 2007, 107: 133–173CrossRefPubMedGoogle Scholar
  40. (d).
    Monnier F, Taillefer M. Angew Chem Int Ed. 2009, 48: 6954–6971CrossRefGoogle Scholar
  41. (e).
    Rodríguez N, Goossen LJ. Chem Soc Rev. 2011, 40: 5030–5048CrossRefGoogle Scholar
  42. (f).
    Yeung CS, Dong VM. Chem Rev. 2011, 111: 1215–1292CrossRefGoogle Scholar
  43. 8.
    (a) Jun CH. Chem Soc Rev. 2004, 33: 610–618CrossRefPubMedGoogle Scholar
  44. (b).
    Murakami M, Matsuda T. Chem Commun. 2011, 47: 1100–1105CrossRefGoogle Scholar
  45. (c).
    Dermenci A, Coe JW, Dong G. Org Chem Front. 2014, 1: 567–581CrossRefPubMedPubMedCentralGoogle Scholar
  46. (d).
    Souillart L, Cramer N. Chem Rev. 2015, 115: 9410–9464CrossRefPubMedGoogle Scholar
  47. (e).
    Murakami M, Ishida N. J Am Chem Soc. 2016, 138: 13759–13769CrossRefGoogle Scholar
  48. (f).
    Chen P, Billett BA, Tsukamoto T, Dong G. ACS Catal. 2017, 7: 1340–1360CrossRefPubMedPubMedCentralGoogle Scholar
  49. (g).
    Fumagalli G, Stanton S, Bower JF. Chem Rev. 2017, 117: 9404–9432CrossRefPubMedGoogle Scholar
  50. (h).
    Chen F, Wang T, Jiao N. Chem Rev. 2014, 114: 8613–8661CrossRefPubMedGoogle Scholar
  51. 9.
    (a) Rubin M, Rubina M, Gevorgyan V. Chem Rev. 2007, 107: 3117–3179CrossRefPubMedGoogle Scholar
  52. (b).
    Seiser T, Cramer N. Org Biomol Chem. 2009, 7: 2835–2840CrossRefPubMedGoogle Scholar
  53. (c).
    Tipper CFH. J Chem Soc. 1955, 2045–2046Google Scholar
  54. (d).
    Wiberg KB, Fenoglio RA. J Am Chem Soc. 1968, 90: 3395–3397CrossRefGoogle Scholar
  55. 10.
    (a) William Suggs J, Cox SD. J Organomet Chem. 1981, 221: 199–201CrossRefGoogle Scholar
  56. (b).
    Suggs JW, Jun CH. J Am Chem Soc. 1984, 106: 3054–3056CrossRefGoogle Scholar
  57. (c).
    Jun CH, Lee H. J Am Chem Soc. 1999, 121: 880–881CrossRefGoogle Scholar
  58. (d).
    Jun CH, Lee H, Lim SG. J Am Chem Soc. 2001, 123: 751–752CrossRefPubMedGoogle Scholar
  59. (e).
    Dreis AM, Douglas CJ. J Am Chem Soc. 2009, 131: 412–413CrossRefPubMedGoogle Scholar
  60. (f).
    Wang J, Chen W, Zuo S, Liu L, Zhang X, Wang J. Angew Chem Int Ed. 2012, 51: 12334–12338CrossRefGoogle Scholar
  61. 11.
    (a) Tobisu M, Chatani N. Chem Soc Rev. 2008, 37: 300–307CrossRefPubMedGoogle Scholar
  62. (b).
    Kou X, Fan J, Tong X, Shen Z. Chin J Org Chem. 2013, 33: 1407CrossRefGoogle Scholar
  63. (c).
    Chen F, Wang T, Jiao N. Chem Rev. 2014, 114: 8613–8661CrossRefPubMedGoogle Scholar
  64. (d).
    Wen Q, Lu P, Wang Y. RSC Adv. 2014, 4: 47806–47826CrossRefGoogle Scholar
  65. (e).
    Murahashi S, Naota T, Nakajima N. J Org Chem. 1986, 51: 898–901CrossRefGoogle Scholar
  66. (f).
    Taw FL, White PS, Bergman RG, Brookhart M. J Am Chem Soc. 2002, 124: 4192–4193CrossRefPubMedGoogle Scholar
  67. (g).
    Nakao Y, Oda S, Hiyama T. J Am Chem Soc. 2004, 126: 13904–13905CrossRefPubMedGoogle Scholar
  68. (h).
    Nakao Y, Yukawa T, Hirata Y, Oda S, Satoh J, Hiyama T. J Am Chem Soc. 2006, 128: 7116–7117CrossRefPubMedGoogle Scholar
  69. (i).
    Tobisu M, Kita Y, Chatani N. J Am Chem Soc. 2006, 128: 8152–8153CrossRefPubMedGoogle Scholar
  70. 12.
    (a) DuPont. Chem Eng News. 1971, 49: 30–31Google Scholar
  71. (b).
    Huthmacher K, Krill S. In: Cornils B, Hermann WA, eds. Applied Homogeneous Catalysis with Organometallic Compounds. 2nd ed. Weinheim: Wiley-VCH. 2002Google Scholar
  72. 13.
    (a) Nakao Y, Hiyama T. J Syn Org Chem Jpn. 2007, 65: 999–1008CrossRefGoogle Scholar
  73. (b).
    Nakao Y, Hiyama T. Pure Appl Chem. 2008, 80: 1097–1107CrossRefGoogle Scholar
  74. (c).
    Yada A, Yukawa T, Idei H, Nakao Y, Hiyama T. Bull Chem Soc Jpn. 2010, 83: 619–634CrossRefGoogle Scholar
  75. (d).
    Nakao Y. Bull Chem Soc Jpn. 2012, 85: 731–745CrossRefGoogle Scholar
  76. (e).
    Brunkan NM, Brestensky DM, Jones WD. J Am Chem Soc. 2004, 126: 3627–3641CrossRefPubMedGoogle Scholar
  77. (f).
    Nakao Y, Hirata Y, Tanaka M, Hiyama T. Angew Chem Int Ed. 2008, 47: 385–387CrossRefGoogle Scholar
  78. (g).
    Watson MP, Jacobsen EN. J Am Chem Soc. 2008, 130: 12594–12595CrossRefPubMedPubMedCentralGoogle Scholar
  79. (h).
    Hirata Y, Yada A, Morita E, Nakao Y, Hiyama T, Ohashi M, Ogoshi S. J Am Chem Soc. 2010, 132: 10070–10077CrossRefPubMedGoogle Scholar
  80. (i).
    Minami Y, Yoshiyasu H, Nakao Y, Hiyama T. Angew Chem Int Ed. 2013, 52: 883–887CrossRefGoogle Scholar
  81. (j).
    Miyazaki Y, Ohta N, Semba K, Nakao Y. J Am Chem Soc. 2014, 136: 3732–3735CrossRefPubMedGoogle Scholar
  82. (k).
    Rondla NR, Ogilvie JM, Pan Z, Douglas CJ. Chem Commun. 2014, 50: 8974–8977CrossRefGoogle Scholar
  83. 14.
    Nakao Y, Yada A, Ebata S, Hiyama T. J Am Chem Soc. 2007, 129: 2428–2429CrossRefPubMedGoogle Scholar
  84. 15.
    Nakao Y, Ebata S, Yada A, Hiyama T, Ikawa M, Ogoshi S. J Am Chem Soc. 2008, 130: 12874–12875CrossRefPubMedGoogle Scholar
  85. 16.
    (a) Hirata Y, Yukawa T, Kashihara N, Nakao Y, Hiyama T. J Am Chem Soc. 2009, 131: 10964–10973CrossRefPubMedGoogle Scholar
  86. (b).
    Yada A, Yukawa T, Nakao Y, Hiyama T. Chem Commun. 2009, 107: 3931–3933CrossRefGoogle Scholar
  87. (c).
    Nakao Y, Yada A, Hiyama T. J Am Chem Soc. 2010, 132: 10024–10026CrossRefPubMedGoogle Scholar
  88. (d).
    Yada A, Ebata S, Idei H, Zhang D, Nakao Y, Hiyama T. Bull Chem Soc Jpn. 2010, 83: 1170–1184CrossRefGoogle Scholar
  89. (e).
    Yamada Y, Ebata S, Hiyama T, Nakao Y. Tetrahedron. 2015, 71: 4413–4417CrossRefGoogle Scholar
  90. 17.
    (a) Huang J, Haar CM, Nolan SP, Marcone JE, Moloy KG. Organometallics. 1999, 18: 297–299CrossRefGoogle Scholar
  91. (b).
    Shen Q, Hartwig JF. J Am Chem Soc. 2007, 129: 7734–7735CrossRefPubMedPubMedCentralGoogle Scholar
  92. 18.
    Nakai K, Kurahashi T, Matsubara S. J Am Chem Soc. 2011, 133: 11066–11068CrossRefPubMedGoogle Scholar
  93. 9.
    (a) Nakai K, Kurahashi T, Matsubara S. Org Lett. 2013, 15: 856–859CrossRefPubMedGoogle Scholar
  94. (b).
    Nakai K, Kurahashi T, Matsubara S. Tetrahedron. 2015, 71: 4512–4517CrossRefGoogle Scholar
  95. 20.
    (a) Patra T, Agasti S, Akanksha S, Maiti D. Chem Commun. 2013, 49: 69–71CrossRefGoogle Scholar
  96. (b).
    Patra T, Agasti S, Modak A, Maiti D. Chem Commun. 2013, 49: 8362–8364CrossRefGoogle Scholar
  97. 21.
    Romeder G. Hydrogen Cyanide. e-EROS Encyclopedia of Reagents for Organic Synthesis. 2000Google Scholar
  98. 22.
    (a) Fang X, Yu P, Morandi B. Science. 2016, 351: 832–836CrossRefPubMedGoogle Scholar
  99. (b).
    Yu P, Morandi B. Angew Chem Int Ed. 2017, 56: 15693–15697CrossRefGoogle Scholar
  100. (c).
    Fang X, Yu P, Prina Cerai G, Morandi B. Chem Eur J. 2016, 22: 15629–15633CrossRefPubMedGoogle Scholar
  101. 23.
    Tamaki T, Ohashi M, Ogoshi S. Angew Chem Int Ed. 2011, 50: 12067–12070CrossRefGoogle Scholar
  102. 24.
    (a) Nakao Y, Kanyiva KS, Hiyama T. J Am Chem Soc. 2008, 130: 2448–2449CrossRefPubMedGoogle Scholar
  103. (b).
    Yang L, Semba K, Nakao Y. Angew Chem Int Ed. 2017, 56: 4853–4857CrossRefGoogle Scholar
  104. (c).
    Hara N, Saito T, Semba K, Kuriakose N, Zheng H, Sakaki S, Nakao Y. J Am Chem Soc. 2018, 140: 7070–7073CrossRefPubMedGoogle Scholar
  105. 25.
    (a) Nakao Y, Idei H, Kanyiva KS, Hiyama T. J Am Chem Soc. 2009, 131: 5070–5071CrossRefPubMedGoogle Scholar
  106. (b).
    Kanyiva KS, Löbermann F, Nakao Y, Hiyama T. Tetrahedron Lett. 2009, 50: 3463–3466CrossRefGoogle Scholar
  107. (c).
    Nakao Y, Idei H, Kanyiva KS, Hiyama T. J Am Chem Soc. 2009, 131: 15996–15997CrossRefPubMedGoogle Scholar
  108. (d).
    Nakao Y, Yamada Y, Kashihara N, Hiyama T. J Am Chem Soc. 2010, 132: 13666–13668CrossRefPubMedGoogle Scholar
  109. (e).
    Tsai CC, Shih WC, Fang CH, Li CY, Ong TG,Ya. GPA. J Am Chem Soc. 2010, 132: 11887–11889CrossRefGoogle Scholar
  110. (f).
    Nakao Y, Morita E, Idei H, Hiyama T. J Am Chem Soc. 2011, 133: 3264–3267CrossRefPubMedGoogle Scholar
  111. (g).
    Miyazaki Y, Yamada Y, Nakao Y, Hiyama T. Chem Lett. 2012, 41: 298–300CrossRefGoogle Scholar
  112. (h).
    Shih WC, Chen WC, Lai YC, Yu MS, Ho JJ, Yap GPA, Ong TG. Org Lett. 2012, 14: 2046–2049CrossRefPubMedGoogle Scholar
  113. (i).
    Tamura R, Yamada Y, Nakao Y, Hiyama T. Angew Chem. 2012, 124: 5777–5780CrossRefGoogle Scholar
  114. (j).
    Liu S, Sawicki J, Driver TG. Org Lett. 2012, 14: 3744–3747CrossRefPubMedGoogle Scholar
  115. (k).
    Lee WC, Wang CH, Lin YH, Shih WC, Ong TG. Org Lett. 2013, 15: 5358–5361CrossRefPubMedGoogle Scholar
  116. (l).
    Yu MS, Lee WC, Chen CH, Tsai FY, Ong TG. Org Lett. 2014, 16: 4826–4829CrossRefPubMedGoogle Scholar
  117. (m).
    Lee WC, Shih WC, Wang TH, Liu Y, Yap GPA, Ong TG. Tetrahedron. 2015, 71: 4460–4464CrossRefGoogle Scholar
  118. (n).
    Lee WC, Chen CH, Liu CY, Yu MS, Lin YH, Ong TG. Chem Commun. 2015, 51: 17104–17107CrossRefGoogle Scholar
  119. (o).
    Okumura S, Tang S, Saito T, Semba K, Sakaki S, Nakao Y. J Am Chem Soc. 2016, 138: 14699–14704CrossRefPubMedGoogle Scholar
  120. (p).
    Okumura S, Nakao Y. Org Lett. 2017, 19: 584–587CrossRefPubMedGoogle Scholar
  121. (q).
    Inoue F, Saito T, Semba K, Nakao Y. Chem Commun. 2017, 53: 4497–4500CrossRefGoogle Scholar
  122. (r).
    Okumura S, Komine T, Shigeki E, Semba K, Nakao Y. Angew Chem Int Ed. 2018, 57: 929–932CrossRefGoogle Scholar
  123. 26.
    Donets PA, Cramer N. Angew Chem. 2015, 127: 643–647CrossRefGoogle Scholar
  124. 27.
    Miura T, Yamauchi M, Murakami M. Chem Commun. 2009, 36: 1470–1471CrossRefGoogle Scholar
  125. 28.
    Kajita Y, Matsubara S, Kurahashi T. J Am Chem Soc. 2008, 130: 6058–6059CrossRefPubMedGoogle Scholar
  126. 29.
    Shiba T, Kurahashi T, Matsubara S. J Am Chem Soc. 2013, 135: 13636–13639CrossRefPubMedGoogle Scholar
  127. 30.
    Nakai K, Kurahashi T, Matsubara S. Chem Lett. 2013, 42: 1238–1240CrossRefGoogle Scholar
  128. 31.
    (a) Sergeev AG, Hartwig JF. Science. 2011, 332: 439–443CrossRefPubMedGoogle Scholar
  129. (b).
    Sergeev AG, Webb JD, Hartwig JF. J Am Chem Soc. 2012, 134: 20226–20229CrossRefPubMedGoogle Scholar
  130. 32.
    (a) Hsieh JC, Ebata S, Nakao Y, Hiyama T. Synlett. 2010, 11: 1709–1711Google Scholar
  131. (b).
    Watson MP, Jacobsen EN. J Am Chem Soc. 2008, 130: 12594–12595CrossRefPubMedPubMedCentralGoogle Scholar
  132. 33.
    Diesel J, Finogenova AM, Cramer N. J Am Chem Soc. 2018, 140: 4489–4493CrossRefPubMedGoogle Scholar
  133. 34.
    (a) Yoshikai N, Mashima H, Nakamura E. J Am Chem Soc. 2005, 127: 17978–17979CrossRefPubMedGoogle Scholar
  134. (b).
    Yoshikai N, Matsuda H, Nakamura E. J Am Chem Soc. 2009, 131: 9590–9599CrossRefPubMedGoogle Scholar
  135. (c).
    Ackermann L, Althammer A. Chem Unserer Zeit. 2009, 43: 74–83CrossRefGoogle Scholar
  136. (d).
    Jin Z, Li YJ, Ma YQ, Qiu LL, Fang JX. Chem Eur J. 2012, 18: 446–450CrossRefPubMedGoogle Scholar
  137. 35.
    For related reviews on SPO ligands, see: (a) Dubrovina NV, Börner A. Angew Chem Int Ed. 2004, 43: 5883–5886CrossRefGoogle Scholar
  138. (b).
    Ackermann L, Born R, Spatz JH, Althammer A, Gschrei CJ. Pure Appl Chem. 2006, 78: 209–214CrossRefGoogle Scholar
  139. (c).
    Nemoto T, Hamada Y. Chem Record. 2007, 7: 150–158CrossRefGoogle Scholar
  140. (d).
    Nemoto T. Chem Pharm Bull. 2008, 56: 1213–1228CrossRefPubMedGoogle Scholar
  141. (e).
    Ackermann L. Isr J Chem. 2010, 50: 652–663CrossRefGoogle Scholar
  142. (f).
    Nemoto T, Hamada Y. Tetrahedron. 2011, 67: 667–687CrossRefGoogle Scholar
  143. (g).
    Shaikh TM, Weng CM, Hong FE. Coordin Chem Rev. 2012, 256: 771–803CrossRefGoogle Scholar
  144. (h).
    For recent enantioselective examples, see: (h) Achard T. Chimia. 2016, 70: 8–19CrossRefPubMedGoogle Scholar
  145. (i).
    Dong K, Wang Z, Ding K. J Am Chem Soc. 2012, 134: 12474–12477CrossRefPubMedGoogle Scholar
  146. (j).
    Dong K, Li Y, Wang Z, Ding K. Angew Chem Int Ed. 2013, 52: 14191–14195CrossRefGoogle Scholar
  147. (k).
    Chen C, Zhang Z, Jin S, Fan X, Geng M, Zhou Y, Wen S, Wang X, Chung LW, Dong XQ, Zhang X. Angew Chem Int Ed. 2017, 56: 6808–6812CrossRefGoogle Scholar
  148. 36.
    Donets PA, Cramer N. J Am Chem Soc. 2013, 135: 11772–11775CrossRefPubMedGoogle Scholar
  149. 37.
    Liu QS, Wang DY, Yang ZJ, Luan YX, Yang JF, Li JF, Pu YG, Ye M. J Am Chem Soc. 2017, 139: 18150–18153CrossRefPubMedGoogle Scholar
  150. 38.
    Wang YX, Qi SL, Luan YX, Han XW, Wang S, Chen H, Ye M. J Am Chem Soc. 2018, 140: 5360–5364CrossRefPubMedGoogle Scholar
  151. 39.
    Tan KL, Bergman RG, Ellman JA. J Am Chem Soc. 2001, 123: 2685–2686CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory and Institute of Elemento-Organic ChemistryNankai UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations