Science China Chemistry

, Volume 61, Issue 8, pp 993–1003 | Cite as

Coronarenes: recent advances and perspectives on macrocyclic and supramolecular chemistry

  • Mei-Xiang Wang
Invited Reviews


Synthetic macrocyclic host molecules always play an essential role in the establishment and development of supramolecular chemistry. Along with the continuous interests in the study of classical macrocycles, recent decades have witnessed the emergence and rapid development of the chemistry and supramolecular chemistry of novel and functional macrocycles. Owing to their easy availability, a self-tunable V-shaped cavity resulted from 1,3-alternate conformation, and diversified electronic features steered by the interplay between heteroatom linkages and aromatic rings, heteracalixaromatics act as a type of versatile and powerful macrocyclic hosts in molecular recognition and fabrication of supramolecular systems. Very recently, by means of engineering the bond connectivity or the recombination of chemical bonds within heteracalixaromatics, we have devised coronarenes, a new generation of macrocycles. In this concise review, macrocyclic and supramolecular chemistry of coronarenes are summarized in the order of their syntheses, structural features, molecular recognition and self-assembly properties. In the last part of this article, personal perspectives on the study of macrocyclic and supramolecular chemistry will also be discussed.


coronarenes heteracalixaromatics macrocycles molecular recognition non-covalent bond interactions 



This work was supported by the National Natural Science Foundation of China (21732004, 21421064, 91427301, 21132005) and Tsinghua University. I am indebted to talented research students and postdoctoral fellows, whose names can be found in references, for their great contributions to the project of macrocyclic and supramolecular chemistry.


  1. 1.
    (a) Lehn J-M, Atwood JL, Davies JED, MacNicol DD, Vögtle F. Comprehensive Supramolecular Chemistry. Oxford: Pergamon, 1996Google Scholar
  2. (b).
    Liu Z, Nalluri SKM, Stoddart JF. Chem Soc Rev, 2017, 46: 2459–2478CrossRefPubMedGoogle Scholar
  3. 2.
    Wang MX, Zhang XH, Zheng QY. Angew Chem Int Ed, 2004, 43: 838–842CrossRefGoogle Scholar
  4. 3.
    Wang MX, Yang HB. J Am Chem Soc, 2004, 126: 15412–15422CrossRefPubMedGoogle Scholar
  5. 4.
    Wang MX. Chem Commun, 2008, 27: 4541CrossRefGoogle Scholar
  6. 5.
    Wang MX. Acc Chem Res, 2012, 45: 182–195CrossRefPubMedGoogle Scholar
  7. 6.
    Maes W, Dehaen W. Chem Soc Rev, 2008, 37: 2393CrossRefPubMedGoogle Scholar
  8. 7.
    Tsue H, Ishibashi K, Tamura R. Azacalixarene: A new class in the calixarene family. In: Topics in Heterocyclic Chemistry. Heidelberg: Springer, 2008. 73–96Google Scholar
  9. 8.
    Morohashi N, Narumi F, Iki N, Hattori T, Miyano S. Chem Rev, 2006, 106: 5291–5316CrossRefPubMedGoogle Scholar
  10. 9.
    (a)Neri P, Sessler JL, Wang M-X. Calixarenes and Beyond. Heidelberg: Springer, 2016Google Scholar
  11. (b).
    Xu R, Hou B, Wang D, Wang M. Sci China Chem, 2016, 59: 1306–1310CrossRefGoogle Scholar
  12. 10.
    Li JT, Wang LX, Wang DX, Zhao L, Wang MX. J Org Chem, 2014, 79: 2178–2188CrossRefPubMedGoogle Scholar
  13. 11.
    Yao B, Wang DX, Huang ZT, Wang MX. Chem Commun, 2009, 2899Google Scholar
  14. 12.
    Zhang H, Yao B, Zhao L, Wang DX, Xu BQ, Wang MX. J Am Chem Soc, 2014, 136: 6326–6332CrossRefPubMedGoogle Scholar
  15. 13.
    Wang F, Zhao L, You J, Wang MX. Org Chem Front, 2016, 3: 880–886CrossRefGoogle Scholar
  16. 14.
    Zhang Q, Wang MX. Org Chem Front, 2017, 4: 283–287CrossRefGoogle Scholar
  17. 15.
    Zhang Q, Liu Y, Wang T, Zhang X, Long C, Wu YD, Wang MX. J Am Chem Soc, 2018, 140: 5579–5587CrossRefPubMedGoogle Scholar
  18. 16.
    Guo QH, Fu ZD, Zhao L, Wang MX. Angew Chem Int Ed, 2014, 53: 13548–13552CrossRefGoogle Scholar
  19. 17.
    Guo QH, Zhao L, Wang MX. Chem Eur J, 2016, 22: 6947–6955CrossRefPubMedGoogle Scholar
  20. 18.
    Clavier G, Audebert P. Chem Rev, 2010, 110: 3299–3314CrossRefPubMedGoogle Scholar
  21. 19.
    Lu Y, Fu ZD, Guo QH, Wang MX. Org Lett, 2017, 19: 1590–1593CrossRefPubMedGoogle Scholar
  22. 20.
    Fu ZD, Guo QH, Zhao L, Wang DX, Wang MX. Org Lett, 2016, 18: 2668–2671CrossRefPubMedGoogle Scholar
  23. 21.
    Wu ZC, Guo QH, Wang MX. Angew Chem Int Ed, 2017, 56: 7151–7155CrossRefGoogle Scholar
  24. 22.
    Zhao MY, Wang DX, Wang MX. J Org Chem, 2018, 83: 1502–1509CrossRefPubMedGoogle Scholar
  25. 23.
    Ren WS, Zhao L, Wang MX. Org Lett, 2016, 18: 3126–3129CrossRefPubMedGoogle Scholar
  26. 24.
    Ren WS, Wang MX. Supramol Chem, 2018, 30: 583–588CrossRefGoogle Scholar
  27. 25.
    Lu Y, Liang DD, Fu ZD, Guo QH, Wang MX. Chin J Chem, 2018, 36: 630–634CrossRefGoogle Scholar
  28. 26.
    Guo QH, Zhao L, Wang MX. Angew Chem Int Ed, 2015, 54: 8386–8389CrossRefGoogle Scholar
  29. 27.
    Garau C, Quiñonero D, Frontera A, Costa A, Ballester P, Deyà PM. Chem Phys Lett, 2003, 370: 7–13CrossRefGoogle Scholar
  30. 28.
    Gallivan JP, Dougherty DA. Org Lett, 1999, 1: 103–106CrossRefPubMedGoogle Scholar
  31. 29.
    Alkorta I, Rozas I, Elguero J. J Org Chem, 1997, 62: 4687–4691CrossRefGoogle Scholar
  32. 30.
    Zeng L, Guo QH, Feng Y, Xu JF, Wei Y, Li Z, Wang MX, Zhang X. Langmuir, 2017, 33: 5829–5834CrossRefPubMedGoogle Scholar
  33. 31.
    Zhao MY, Guo QH, Wang MX. Org Chem Front, 2018, 5: 760–764CrossRefGoogle Scholar
  34. 32.
    (a) Liu SQ, Wang DX, Zheng QY, Wang MX. Chem Commun, 2007, 3856Google Scholar
  35. (b).
    Zhang EX, Wang DX, Zheng QY, Wang MX. Org Lett, 2008, 10: 2565–2568CrossRefPubMedGoogle Scholar
  36. (c).
    Wang LX, Zhao L, Wang DX, Wang MX. Chem Commun, 2011, 47: 9690CrossRefGoogle Scholar
  37. (d).
    Fa SX, Wang LX, Wang DX, Zhao L, Wang MX. J Org Chem, 2014, 79: 3559–3571CrossRefPubMedGoogle Scholar
  38. 33.
    Wang MX. Supramol Chem, 2016, 28: 1–3CrossRefGoogle Scholar
  39. 34.
    Pedersen CJ. Angew Chem Int Ed Engl, 1988, 27: 1021–1027CrossRefGoogle Scholar
  40. 35.
    Lehn JM. Angew Chem Int Ed Engl, 1988, 27: 89–112CrossRefGoogle Scholar
  41. 36.
    Cram DJ. Angew Chem Int Ed Engl, 1988, 27: 1009–1020CrossRefGoogle Scholar
  42. 37.
    Easton CJ, Lincoln SF. Modified Cyclodextrins—Scaffolds and Templates for Supramolecular Chemistry. London: Imperial College Press, 1999CrossRefGoogle Scholar
  43. 38.
    (a) Gutsche CD. Calixarenes Revisited. Cambridge: Royal Society of Chemistry, 1998Google Scholar
  44. (b).
    Rebek J. Angew Chem Int Ed, 2005, 44: 2068–2078CrossRefGoogle Scholar
  45. 39.
    (a) Kim K, Selvapalam N, Ko YH, Park KM, Kim D, Kim J. Chem Soc Rev, 2007, 36: 267–279CrossRefGoogle Scholar
  46. (b).
    Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew Chem Int Ed, 2005, 44: 4844–4870CrossRefGoogle Scholar
  47. (c).
    Assaf KI, Nau WM. Chem Soc Rev, 2015, 44: 394–418CrossRefPubMedGoogle Scholar
  48. 40.
    Gale PA, Anzenbacher Jr. P, Sessler JL. Coordin Chem Rev, 2001, 222: 57–102CrossRefGoogle Scholar
  49. 41.
    (a) Sisto T, Jasti R. Synlett, 2012, 23: 483–489CrossRefGoogle Scholar
  50. (b).
    Omachi H, Segawa Y, Itami K. Acc Chem Res, 2012, 45: 1378–1389CrossRefPubMedGoogle Scholar
  51. (c).
    Yamago S, Kayahara E, Iwamoto T. Chem Record, 2014, 14: 84–100CrossRefGoogle Scholar
  52. (d).
    Golder MR, Jasti R. Acc Chem Res, 2015, 48: 557–566CrossRefPubMedGoogle Scholar
  53. (e).
    Lewis SE. Chem Soc Rev, 2015, 44: 2221–2304CrossRefPubMedGoogle Scholar
  54. 42.
    Ogoshi T. Pillararenes. Cambridge: Royal Society of Chemistry, 2015CrossRefGoogle Scholar
  55. 43.
    (a) Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356: 172–175CrossRefPubMedGoogle Scholar
  56. (b).
    Lewis SE. Chem Soc Rev, 2015, 44: 2221–2304CrossRefPubMedGoogle Scholar
  57. 44.
    (a) Gong HY, Rambo BM, Karnas E, Lynch VM, Sessler JL. Nat Chem, 2010, 2: 406–409CrossRefPubMedGoogle Scholar
  58. (b).
    Rambo BM, Gong HY, Oh M, Sessler JL. Acc Chem Res, 2012, 45: 1390–1401CrossRefPubMedGoogle Scholar
  59. 45.
    Lee S, Chen CH, Flood AH. Nat Chem, 2013, 5: 704–710CrossRefPubMedGoogle Scholar
  60. 46.
    Zhang GW, Li PF, Meng Z, Wang HX, Han Y, Chen CF. Angew Chem Int Ed, 2016, 55: 5304–5308CrossRefGoogle Scholar
  61. 47.
    (a) Jia F, He Z, Yang LP, Pan ZS, Yi M, Jiang RW, Jiang W. Chem Sci, 2015, 6: 6731–6738CrossRefPubMedGoogle Scholar
  62. (b).
    Huang GB, Wang SH, Ke H, Yang LP, Jiang W. J Am Chem Soc, 2016, 138: 14550–14553CrossRefPubMedGoogle Scholar
  63. (c).
    Shorthill BJ, Avetta CT, Glass TE. J Am Chem Soc, 2004, 126: 12732–12733CrossRefPubMedGoogle Scholar
  64. 48.
    Chen H, Fan J, Hu X, Ma J, Wang S, Li J, Yu Y, Jia X, Li C. Chem Sci, 2015, 6: 197–202CrossRefPubMedGoogle Scholar
  65. 49.
    (a) Mascal M, Armstrong A, Bartberger MD. J Am Chem Soc, 2002, 124: 6274–6276CrossRefPubMedGoogle Scholar
  66. (b).
    Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM. Angew Chem Int Ed, 2002, 41: 3389–3392CrossRefGoogle Scholar
  67. (c).
    Alkorta I, Rozas I, Elguero J. J Am Chem Soc, 2002, 124: 8593–8598CrossRefPubMedGoogle Scholar
  68. 50.
    (a) Wang DX, Zheng QY, Wang QQ, Wang MX. Angew Chem Int Ed, 2008, 47: 7485–7488CrossRefGoogle Scholar
  69. (b).
    Wang DX, Wang QQ, Han Y, Wang Y, Huang ZT, Wang MX. Chem Eur J, 2010, 16: 13053–13057CrossRefPubMedGoogle Scholar
  70. (c).
    Wang DX, Wang MX. J Am Chem Soc, 2013, 135: 892–897CrossRefPubMedGoogle Scholar
  71. (d).
    Zhang J, Zhou B, Sun ZR, Wang XB. Phys Chem Chem Phys, 2015, 17: 3131–3141CrossRefPubMedGoogle Scholar
  72. 51.
    (a) Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J. Angew Chem Int Ed, 2011, 50: 9564–9583CrossRefGoogle Scholar
  73. (b).
    Wang DX, Wang MX. Chimia (aarau), 2011, 65: 939–943CrossRefGoogle Scholar
  74. (c).
    Ballester P. Acc Chem Res, 2013, 46: 874–884CrossRefPubMedGoogle Scholar
  75. (d).
    Vargas Jentzsch A, Hennig A, Mareda J, Matile S. Acc Chem Res, 2013, 46: 2791–2800CrossRefPubMedGoogle Scholar
  76. (e).
    Kan X, Liu H, Pan Q, Li Z, Zhao Y. Chin Chem Lett, 2018, 29: 261–266CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology, Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations