Advertisement

Chip-based SALDI-MS for rapid determination of intracellular ratios of glutathione to glutathione disulfide

  • Min Li
  • Sifeng Mao
  • Shiqi Wang
  • Hai-Fang Li
  • Jin-Ming Lin
Articles

Abstract

Alterations in the ratio of glutathione (GSH) to glutathione disulfide (GSSG) reveal the cell living state and are associated with a variety of diseases. In this study, an Au NPs grafted nanoporous silicon chip was used for surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) detection of GSH. Due to the bond interaction between thiol of GSH and Au NPs modified on the chip surfaces, GSH could be captured from the complex cellular lysate. Meanwhile, the composite nanostructures of Au NPs grafted porous silicon surface presented good desorption/ionization efficiency for GSH detection. The GSH levels in different tumor cells were successfully detected. Chip-based SALDI-MS was optimized for quantification of intracellular GSH/GSSG ratio changing under drug stimulation in liver tumor cells, GSSG was reduced to GSH by reductant of tris (2-carboxyethyl)phosphine (TCEP) and isotope-labeling GSH was as an internal standard. It was found that the increasing concentration of drug irinotecan and hypoxia culture condition caused the rapid consumption of GSH and a decrease of GSH/ GSSG ratio in liver tumor cells. The developed SALDI-MS method provided a convenient way to accurately measure and rapidly monitor cellular GSH value and the ratios of GSH/GSSG.

Keywords

glutathione glutathione disulfide gold nanoparticles SALDI-MS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21775086, 21435002, 21621003).

Supplementary material

11426_2018_9327_MOESM1_ESM.pdf (529 kb)
Chip-based SALDI-MS for rapid determination of intracellular ratios of glutathione to glutathione disulfide

References

  1. 1.
    Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. J Nutr, 2004, 134: 489–492CrossRefGoogle Scholar
  2. 2.
    Giustarini D, Galvagni F, Tesei A, Farolfi A, Zanoni M, Pignatta S, Milzani A, Marone IM, Dalle-Donne I, Nassini R, Rossi R. Free Radical Biol Med, 2015, 89: 972–981CrossRefGoogle Scholar
  3. 3.
    Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schüssel K, Müller WE. Biochem Pharmacol, 2003, 66: 1627–1634CrossRefGoogle Scholar
  4. 4.
    Jin YN, Johnso GVW. J Bioenerg Biomembr, 2010, 42: 199–205CrossRefGoogle Scholar
  5. 5.
    Swietek K, Juszczyk J. J Viral Hepatitis, 1997, 4: 139–141CrossRefGoogle Scholar
  6. 6.
    Shirin H, Pinto JT, Liu LU, Merzianu M, Sordillo EM, Moss SF. Cancer Lett, 2001, 164: 127–133CrossRefGoogle Scholar
  7. 7.
    Fabrini R, Bocedi A, Massoud R, Federici G, Ricci G. Clin Biochem, 2012, 45: 668–671CrossRefGoogle Scholar
  8. 8.
    Ngamchuea K, Batchelor-McAuley C, Compton RG. Anal Chem, 2017, 89: 2901–2908CrossRefGoogle Scholar
  9. 9.
    Tietze F. Anal Biochem, 1969, 27: 502–522CrossRefGoogle Scholar
  10. 10.
    Lv Y, Lu M, Yang Y, Yin Y, Zhao J. Sens Actuators B-Chem, 2017, 244: 151–156CrossRefGoogle Scholar
  11. 11.
    Liu J, Bao C, Zhong X, Zhao C, Zhu L. Chem Commun, 2010, 46: 2971–2973CrossRefGoogle Scholar
  12. 12.
    Wu X, Shao A, Zhu S, Guo Z, Zhu W. Sci China Chem, 2016, 59: 62–69CrossRefGoogle Scholar
  13. 13.
    Toyo’oka T. J Chromatogr B, 2009, 877: 3318–3330CrossRefGoogle Scholar
  14. 14.
    Isokawa M, Kanamori T, Funatsu T, Tsunoda M. J Chromatogr B, 2014, 964: 103–115CrossRefGoogle Scholar
  15. 15.
    Giustarini D, Dalle-Donne I, Milzani A, Fanti P, Rossi R. Nat Protoc, 2013, 8: 1660–1669CrossRefGoogle Scholar
  16. 16.
    Häkkinen H. Nat Chem, 2012, 4: 443–455CrossRefGoogle Scholar
  17. 17.
    Pensa E. Cortés E, Corthey G, Carro P, Vericat C, Fonticelli MH, Benítez G, Rubert AA, Salvarezza RC. Acc Chem Res, 2012, 45: 1183–1192CrossRefGoogle Scholar
  18. 18.
    Zhou X, Cao P, Tian Y, Zhu J. J Am Chem Soc, 2010, 132: 4161–4168CrossRefGoogle Scholar
  19. 19.
    Li J, Liu J, Liu Z, Tan Y, Liu X, Wang F. Anal Chem, 2017, 89: 4339–4343CrossRefGoogle Scholar
  20. 20.
    Abdelhamid HN, Wu HF. Anal Bioanal Chem, 2016, 408: 4485–4502CrossRefGoogle Scholar
  21. 21.
    Gao J, Sanchez-Purra M, Huang H, Wang S, Chen Y, Yu X, Luo Q, Hamad-Schifferli K, Liu S. Sci China Chem, 2017, 60: 1219–1229CrossRefGoogle Scholar
  22. 22.
    Liu Z, Zhao F, Gao S, Shao J, Chang H. Nanoscale Res Lett, 2016, 11: 460CrossRefGoogle Scholar
  23. 23.
    Peng H, Tang H, Jiang J. Sci China Chem, 2016, 59: 783–793CrossRefGoogle Scholar
  24. 24.
    Almeida JPM, Figueroa ER, Drezek RA. Nanomed Nanotechnol Biol Med, 2014, 10: 503–514CrossRefGoogle Scholar
  25. 25.
    Chen Z, Li J, Chen X, Cao J, Zhang J, Min Q, Zhu JJ. J Am Chem Soc, 2015, 137: 1903–1908CrossRefGoogle Scholar
  26. 26.
    Wang J, Jie M, Li H, Lin L, He Z, Wang S, Lin JM. Talanta, 2017, 168: 222–229CrossRefGoogle Scholar
  27. 27.
    Su CL, Tseng WL. Anal Chem, 2007, 79: 1626–1633CrossRefGoogle Scholar
  28. 28.
    Larguinho M, Capelo JL, Baptista PV. Talanta, 2013, 105: 417–421CrossRefGoogle Scholar
  29. 29.
    Sangsuwan A, Narupai B, Sae-ung P, Rodtamai S, Rodthongkum N, Hoven VP. Anal Chem, 2015, 87: 10738–10746CrossRefGoogle Scholar
  30. 30.
    Shi CY, Deng CH. Analyst, 2016, 141: 2816–2826CrossRefGoogle Scholar
  31. 31.
    Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Nature, 2000, 408: 440–444CrossRefGoogle Scholar
  32. 32.
    Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ. Science, 2002, 296: 1293–1297CrossRefGoogle Scholar
  33. 33.
    Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST. Science, 2003, 299: 1874–1877CrossRefGoogle Scholar
  34. 34.
    He Y, Kang ZH, Li QS, Tsang C, Fan CH, Lee ST. Angew Chem, 2009, 121: 134–138CrossRefGoogle Scholar
  35. 35.
    Chen S, Xiong C, Liu H, Wan Q, Hou J, He Q, Badu-Tawiah A, Nie Z. Nat Nanotech, 2015, 10: 176–182CrossRefGoogle Scholar
  36. 36.
    Wei J, Buriak JM, Siuzdak G. Nature, 1999, 399: 243–246CrossRefGoogle Scholar
  37. 37.
    Stopka SA, Rong C, Korte AR, Yadavilli S, Nazarian J, Razunguzwa TT, Morris NJ, Vertes A. Angew Chem, 2016, 128: 4558–4562CrossRefGoogle Scholar
  38. 38.
    Tsao CW, Yang ZJ. ACS Appl Mater Interfaces, 2015, 7: 22630–22637CrossRefGoogle Scholar
  39. 39.
    Mathijssen RHJ, Van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A. Clin Cancer Res, 2001, 7: 2182–2194Google Scholar
  40. 40.
    Park DJ, Won JH, Cho AR, Yun HJ, Heo JH, Hwhang TH, Lee DH, Kim WM. J Chromatogr B, 2014, 962: 147–152CrossRefGoogle Scholar
  41. 41.
    Jie M, Li HF, Lin L, Zhang J, Lin JM. RSC Adv, 2016, 6: 54564–54572CrossRefGoogle Scholar
  42. 42.
    Canevali C, Alia M, Fanciulli M, Longo M, Ruffo R, Mari CM. Surf Coat Technol, 2015, 280: 37–42CrossRefGoogle Scholar
  43. 43.
    Wei H, Chueh B, Wu H, Hall EW, Li C, Schirhagl R, Lin JM, Zare RN. Lab Chip, 2011, 11: 238–245CrossRefGoogle Scholar
  44. 44.
    Silina YE, Meier F, Nebolsin VA, Koch M, Volmer DA. J Am Soc Mass Spectrom, 2014, 25: 841–851CrossRefGoogle Scholar
  45. 45.
    Silina YE, Koch M, Volmer DA. J Mass Spectrom, 2014, 49: 468–480CrossRefGoogle Scholar
  46. 46.
    Chiang CK, Chiang NC, Lin ZH, Lan GY, Lin YW, Chang HT. J Am Soc Mass Spectrom, 2010, 21: 1204–1207CrossRefGoogle Scholar
  47. 47.
    Semenza GL. Cell, 2012, 148: 399–408CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation; Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Tsinghua UniversityBeijingChina

Personalised recommendations