Science China Chemistry

, Volume 61, Issue 12, pp 1572–1580 | Cite as

Surface etching induced ultrathin sandwich structure realizing enhanced photocatalytic activity

  • Bo Yang
  • Wentuan Bi
  • Yangyang Wan
  • Xiaogang Li
  • Mingcan Huang
  • Ruilin Yuan
  • Huanxin Ju
  • Wangsheng Chu
  • Xiaojun Wu
  • Linghui He
  • Changzheng WuEmail author
  • Yi Xie


Photocatalytic conversion efficiency is limited by serious charge carrier recombination. Efficient carrier separation is usually achieved by elegantly-designed multi-component structures connected by directional electric field. Herein, we developed a two-dimensional (2D) sandwich structure, as a new photocatalytic system, to realize high-efficiency carrier separation. This strategy integrated multifunction into a single structure for the first time, which successfully introduces a stable built-in electric field, realizing high-effective carrier separation. Besides, the carrier concentration is dramatically increased due to dimensional confinement. Benefiting from above synergic advantages, 2D sandwich photocatalyst achieves the highest nitrogen fixation rate (435 μmol g−1 h−1) in inorganic solid photocatalysts under visible light irradiation. We anticipate that 2D sandwich photocatalyst holds promises for the application and expansion of 2D materials in photocatalysis research.


two-dimensional materials photocatalysis sandwich structure surface modification nitrogen fixation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (2015CB932302), the National Natural Science Foundation of China (U1432133, 11321503, 21701164), the National Young Top-Notch Talent Support Program, the Chinese Academy of Sciences (XDB01020300), the Fok Ying-Tong Education Foundation (141042), the Fundamental Research Funds for the Central Universities (WK2060190027, WK2060190058). We would like to thank beamline BL14W1 (Shanghai Synchrotron Radiation Facility) and the Catalysis and Surface Science Endstation (National Synchrotron Radiation Laboratory) for providing the beam time.

Supplementary material

11426_2018_9314_MOESM1_ESM.docx (6.3 mb)
Surface Etching Induced Ultrathin Sandwich Structure Realizing Enhanced Photocatalytic Activity


  1. 1.
    Chen X, Shen S, Guo L, Mao SS. Chem Rev, 2010, 110: 6503–6570CrossRefGoogle Scholar
  2. 2.
    Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM. Nature, 2008, 452: 301–310CrossRefGoogle Scholar
  3. 3.
    Perutz RN, Procacci B. Chem Rev, 2016, 116: 8506–8544CrossRefGoogle Scholar
  4. 4.
    Crabtree RH. Chem Rev, 2015, 115: 127–150CrossRefGoogle Scholar
  5. 5.
    Tian J, Zhao Z, Kumar A, Boughton RI, Liu H. Chem Soc Rev, 2014, 43: 6920–6937CrossRefGoogle Scholar
  6. 6.
    Bian Z, Tachikawa T, Zhang P, Fujitsuka M, Majima T. J Am Chem Soc, 2013, 136: 458–465CrossRefGoogle Scholar
  7. 7.
    Maeda K, Ohno T, Domen K. Chem Sci, 2011, 2: 1362–1368CrossRefGoogle Scholar
  8. 8.
    Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong JR. Adv Mater, 2013, 25: 3820–3839CrossRefGoogle Scholar
  9. 9.
    Zhao C, Luo H, Chen F, Zhang P, Yi L, You K. Energy Environ Sci, 2014, 7: 1700–1707CrossRefGoogle Scholar
  10. 10.
    Tan C, Zhang H. J Am Chem Soc, 2015, 137: 12162–12174CrossRefGoogle Scholar
  11. 11.
    Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X. Nat Nanotech, 2016, 11: 218–230CrossRefGoogle Scholar
  12. 12.
    Bi W, Li X, Zhang L, Jin T, Zhang L, Zhang Q, Luo Y, Wu C, Xie Y. Nat Commun, 2015, 6: 8647CrossRefGoogle Scholar
  13. 13.
    Huang J, Shang Q, Huang Y, Tang F, Zhang Q, Liu Q, Jiang S, Hu F, Liu W, Luo Y, Yao T, Jiang Y, Pan Z, Sun Z, Wei S. Angew Chem, 2016, 128: 2177–2181CrossRefGoogle Scholar
  14. 14.
    Guan M, Xiao C, Zhang J, Fan S, An R, Cheng Q, Xie J, Zhou M, Ye B, Xie Y. J Am Chem Soc, 2013, 135: 10411–10417CrossRefGoogle Scholar
  15. 15.
    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz TF, Hone J, Wang ZL. Nature, 2014, 514: 470–474CrossRefGoogle Scholar
  16. 16.
    Li H, Shang J, Ai Z, Zhang L. J Am Chem Soc, 2015, 137: 6393–6399CrossRefGoogle Scholar
  17. 17.
    Ketterer J, Krämer V. Acta Crystlogr C Cryst Struct Commun, 1986, 42: 1098–1099CrossRefGoogle Scholar
  18. 18.
    Wu D, Ye L, Yue S, Wang B, Wang W, Yip HY, Wong PK. J Phys Chem C, 2016, 120: 7715–7727CrossRefGoogle Scholar
  19. 19.
    Yakovlev VV, Scarel G, Aita CR, Mochizuki S. Appl Phys Lett, 2000, 76: 1107–1109CrossRefGoogle Scholar
  20. 20.
    Zhang D, Li J, Wang Q, Wu Q. J Mater Chem A, 2013, 1: 8622–8629CrossRefGoogle Scholar
  21. 21.
    Gondal MA, Saleh TA, Drmosh Q. Sci Adv Mater, 2012, 4: 507–510CrossRefGoogle Scholar
  22. 22.
    Denisov VN, Ivlev AN, Lipin AS, Mavrin BN, Orlov VG. J Phys-Condens Matter, 1997, 9: 4967–4978CrossRefGoogle Scholar
  23. 23.
    Schalow T, Brandt B, Laurin M, Schauermann S, Guimond S, Kuhlenbeck H, Libuda J, Freund HJ. Surf Sci, 2006, 600: 2528–2542CrossRefGoogle Scholar
  24. 24.
    Electron Inelastic-mean-free-paths N. NIST Gaithersburg, MD, USA, 2000Google Scholar
  25. 25.
    Li H, Wang D, Wang P, Fan H, Xie T. Chem Eur J, 2009, 15: 12521–12527CrossRefGoogle Scholar
  26. 26.
    Ye L, Deng K, Xu F, Tian L, Peng T, Zan L. Phys Chem Chem Phys, 2012, 14: 82–85CrossRefGoogle Scholar
  27. 27.
    Kong XY,Lee WPC, Ong WJ, Chai SP, Mohamed AR. Chem-CatChem, 2016, 8: 3074–3081Google Scholar
  28. 28.
    Sun S, An Q, Wang W, Zhang L, Liu J, Goddard III WA. J Mater Chem A, 2017, 5: 201–209CrossRefGoogle Scholar
  29. 29.
    Chen X, Liu L, Yu PY, Mao SS. Science, 2011, 331: 746–750CrossRefGoogle Scholar
  30. 30.
    Chen J, Guan M, Cai W, Guo J, Xiao C, Zhang G. Phys Chem Chem Phys, 2014, 16: 20909–20914CrossRefGoogle Scholar
  31. 31.
    Kronik L, Shapira Y. Surf Sci Rep, 1999, 37: 1–206CrossRefGoogle Scholar
  32. 32.
    Sun Y, Cheng H, Gao S, Sun Z, Liu Q, Liu Q, Lei F, Yao T, He J, Wei S, Xie Y. Angew Chem Int Ed, 2012, 51: 8727–8731CrossRefGoogle Scholar
  33. 33.
    Bai S, Yang L, Wang C, Lin Y, Lu J, Jiang J, Xiong Y. Angew Chem Int Ed, 2015, 54: 14810–14814CrossRefGoogle Scholar
  34. 34.
    Sun S, Li X, Wang W, Zhang L, Sun X. Appl Catal B-Environ, 2017, 200: 323–329CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bo Yang
    • 1
  • Wentuan Bi
    • 1
  • Yangyang Wan
    • 1
    • 2
  • Xiaogang Li
    • 1
  • Mingcan Huang
    • 1
  • Ruilin Yuan
    • 1
  • Huanxin Ju
    • 3
  • Wangsheng Chu
    • 3
  • Xiaojun Wu
    • 1
    • 2
  • Linghui He
    • 1
  • Changzheng Wu
    • 1
    Email author
  • Yi Xie
    • 1
  1. 1.Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), and Department of Modern MechanicsUniversity of Science & Technology of ChinaHefeiChina
  2. 2.CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, Synergetic Innovation of Quantum Information & Quantum Technology, and Department of Materials Science and EngineeringUniversity of Science &Technology of ChinaHefeiChina
  3. 3.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations