Science China Chemistry

, Volume 61, Issue 12, pp 1624–1629 | Cite as

Controlling disorder in host lattice by hetero-valence ion doping to manipulate luminescence in spinel solid solution phosphors

  • Qinqin Ma
  • Jie Wang
  • Wei Zheng
  • Qian Wang
  • Zhiheng Li
  • Hengjiang Cong
  • Huijun Liu
  • Xueyuan Chen
  • Quan YuanEmail author


Phosphor materials have been rapidly developed in the past decades. Developing phosphors with desired properties including strong luminescence intensity and long lifetime has attracted widespread attention. Herein, we show that hetero-valence ion doping can serve as a potent strategy to manipulate luminescence in persistent phosphors by controlling disorder in the host lattice. Specifically, spinel phosphor Zn(Ga1−xZnx)(Ga1−xGex)O4:Cr is developed by doping ZnGa2O4:Cr with tetravalent Ge4+. Compared to the original ZnGa2O4:Cr, the doped Zn(Ga1−xZnx)(Ga1−xGex)O4:Cr possesses significantly enhanced persistent luminescence intensity and prolonged decay time. Rietveld refinements show that Ge4+ enters into octahedral sites to substitute Ga3+, which leads to the co-substitution of Ga3+ by Zn2+ for charge compensation. The hetero-valence substitution of Ga3+ by Ge4+ and Zn2+ enriches the charged defects in Zn(Ga1−xZnx)(Ga1−xGex)O4:Cr, making it possible to trap large amounts of charge carriers within the defects during excitation. Electron paramagnetic resonance measurement further confirms that the amount of Cr3+ neighboring charged defects increases with Ge4+ doping. Thus charge carriers released from defects can readily combine with the neighboring Cr3+ to produce bright persistent luminescence after excitation ceases. The hetero-valence ion doping strategy can further be employed to develop many other phosphors and contributes to lighting, photocatalysis and bioimaging.


persistent luminescence nanoparticle defect doping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key R&D Program of China (2017YFA0208000), the National Natural Science Foundation of China (21675120, 21325104), and the CAS/SAFEA International Partnership Program for Creative Research Teams. We sincerely thank Prof. Zhenxing Wang from Huazhong University of Science and Technology for his assistance in EPR simulation. The EPR simulation is conducted with the SPIN developed by Andrew Ozarowski in the National High Magnetic Field Laboratory, USA.

Supplementary material

11426_2018_9311_MOESM1_ESM.docx (2.3 mb)
Controlling Disorder in Host Lattice by Hetero-valence Ion Doping to Manipulate Luminescence in Spinel Solid Solution Phosphors


  1. 1.
    Zhu X, Su Q, Feng W, Li F. Chem Soc Rev, 2017, 46: 1025–1039CrossRefGoogle Scholar
  2. 2.
    Wu BY, Wang HF, Chen JT, Yan XP. J Am Chem Soc, 2011, 133: 686–688CrossRefGoogle Scholar
  3. 3.
    Maldiney T, Bessière A, Seguin J, Teston E, Sharma SK, Viana B, Bos AJJ, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C. Nat Mater, 2014, 13: 418–426CrossRefGoogle Scholar
  4. 4.
    Wang W, Cheng Z, Yang P, Hou Z, Li C, Li G, Dai Y, Lin J. Adv Funct Mater, 2011, 21: 456–463CrossRefGoogle Scholar
  5. 5.
    Bielec P, Schnick W. Angew Chem Int Ed, 2017, 56: 4810–4813CrossRefGoogle Scholar
  6. 6.
    Lin CC, Tsai YT, Johnston HE, Fang MH, Yu F, Zhou W, Whitfield P, Li Y, Wang J, Liu RS, Attfield JP. J Am Chem Soc, 2017, 139: 11766–11770CrossRefGoogle Scholar
  7. 7.
    Zhou J, Liu Q, Feng W, Sun Y, Li F. Chem Rev, 2015, 115: 395–465CrossRefGoogle Scholar
  8. 8.
    Dong H, Sun LD, Wang YF, Ke J, Si R, Xiao JW, Lyu GM, Shi S, Yan CH. J Am Chem Soc, 2015, 137: 6569–6576CrossRefGoogle Scholar
  9. 9.
    Huang L, Zhao Y, Zhang H, Huang K, Yang J, Han G. Angew Chem Int Ed, 2017, 56: 14400–14404CrossRefGoogle Scholar
  10. 10.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Science, 2005, 307: 538–544CrossRefGoogle Scholar
  11. 11.
    Wu P, Yan XP. Chem Soc Rev, 2013, 42: 5489–5521CrossRefGoogle Scholar
  12. 12.
    Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. Chem Rev, 2016, 116: 12234–12327CrossRefGoogle Scholar
  13. 13.
    Wei Y, Deng X, Xie Z, Cai X, Liang S, Ma P, Hou Z, Cheng Z, Lin J. Adv Funct Mater, 2017, 27: 1703535CrossRefGoogle Scholar
  14. 14.
    Zou S, Liu Y, Li J, Liu C, Feng R, Jiang F, Li Y, Song J, Zeng H, Hong M, Chen X. J Am Chem Soc, 2017, 139: 11443–11450CrossRefGoogle Scholar
  15. 15.
    Wu SQ, Yang CX, Yan XP. Adv Funct Mater, 2017, 27: 1604992CrossRefGoogle Scholar
  16. 16.
    Li Z, Zhang Y, Wu X, Huang L, Li D, Fan W, Han G. J Am Chem Soc, 2015, 137: 5304–5307CrossRefGoogle Scholar
  17. 17.
    Huang B. Inorg Chem, 2015, 54: 11423–11440CrossRefGoogle Scholar
  18. 18.
    Huang B, Sun M. Phys Chem Chem Phys, 2017, 19: 9457–9469CrossRefGoogle Scholar
  19. 19.
    Li Z, Zhang Y, Wu X, Wu X, Maudgal R, Zhang H, Han G. Adv Sci, 2015, 2: 1500001CrossRefGoogle Scholar
  20. 20.
    Song L, Li PP, Yang W, Lin XH, Liang H, Chen XF, Liu G, Li J, Yang HH. Adv Funct Mater, 2018, 28: 1707496CrossRefGoogle Scholar
  21. 21.
    Zhou Z, Zheng W, Kong J, Liu Y, Huang P, Zhou S, Chen Z, Shi J, Chen X. Nanoscale, 2017, 9: 6846–6853CrossRefGoogle Scholar
  22. 22.
    Wang J, Ma Q, Hu XX, Liu H, Zheng W, Chen X, Yuan Q, Tan W. ACS Nano, 2017, 11: 8010–8017CrossRefGoogle Scholar
  23. 23.
    Song L, Lin XH, Song XR, Chen S, Chen XF, Li J, Yang HH. Nanoscale, 2017, 9: 2718–2722CrossRefGoogle Scholar
  24. 24.
    Gai S, Li C, Yang P, Lin J. Chem Rev, 2014, 114: 2343–2389CrossRefGoogle Scholar
  25. 25.
    Qin X, Liu X, Huang W, Bettinelli M, Liu X. Chem Rev, 2017, 117: 4488–4527CrossRefGoogle Scholar
  26. 26.
    Lécuyer T, Teston E, Ramirez-Garcia G, Maldiney T, Viana B, Seguin J, Mignet N, Scherman D, Richard C. Theranostics, 2016, 6: 2488–2523CrossRefGoogle Scholar
  27. 27.
    Wang J, Ma Q, Wang Y, Shen H, Yuan Q. Nanoscale, 2017, 9: 6204–6218CrossRefGoogle Scholar
  28. 28.
    Xia Z, Ma C, Molokeev MS, Liu Q, Rickert K, Poeppelmeier KR. J Am Chem Soc, 2015, 137: 12494–12497CrossRefGoogle Scholar
  29. 29.
    Punjabi A, Wu X, Tokatli-Apollon A, El-Rifai M, Lee H, Zhang Y, Wang C, Liu Z, Chan EM, Duan C, Han G. ACS Nano, 2014, 8: 10621–10630CrossRefGoogle Scholar
  30. 30.
    Shang M, Li C, Lin J. Chem Soc Rev, 2014, 43: 1372–1386CrossRefGoogle Scholar
  31. 31.
    Danielson E, Devenney M, Giaquinta DM, Golden JH, Haushalter RC, McFarland EW, Poojary DM, Reaves CM, Weinberg WH, Wu XD. Science, 1998, 279: 837–839CrossRefGoogle Scholar
  32. 32.
    Park WB, Singh SP, Sohn KS. J Am Chem Soc, 2014, 136: 2363–2373CrossRefGoogle Scholar
  33. 33.
    Han S, Qin X, An Z, Zhu Y, Liang L, Han Y, Huang W, Liu X. Nat Commun, 2016, 7: 13059CrossRefGoogle Scholar
  34. 34.
    Tsai YT, Chiang CY, Zhou W, Lee JF, Sheu HS, Liu RS. J Am Chem Soc, 2015, 137: 8936–8939CrossRefGoogle Scholar
  35. 35.
    De Trizio L, Manna L. Chem Rev, 2016, 116: 10852–10887CrossRefGoogle Scholar
  36. 36.
    Chen D, Wang Y. Nanoscale, 2013, 5: 4621–4637CrossRefGoogle Scholar
  37. 37.
    Dong H, Sun LD, Feng W, Gu Y, Li F, Yan CH. ACS Nano, 2017, 11: 3289–3297CrossRefGoogle Scholar
  38. 38.
    Huang B, Peng D, Pan C. Phys Chem Chem Phys, 2017, 19: 1190–1208CrossRefGoogle Scholar
  39. 39.
    Deng R, Qin F, Chen R, Huang W, Hong M, Liu X. Nat Nanotech, 2015, 10: 237–242CrossRefGoogle Scholar
  40. 40.
    Shen S, Wang Q. Chem Mater, 2013, 25: 1166–1178CrossRefGoogle Scholar
  41. 41.
    Liu Y, Zhang X, Hao Z, Wang X, Zhang J. Chem Commun, 2011, 47: 10677–10679CrossRefGoogle Scholar
  42. 42.
    He H, Zhang Y, Pan Q, Wu G, Dong G, Qiu J. J Mater Chem C, 2015, 3: 5419–5429CrossRefGoogle Scholar
  43. 43.
    Liu J, Lian H, Shi C. Opt Mater, 2007, 29: 1591–1594CrossRefGoogle Scholar
  44. 44.
    Zheng W, Zhou S, Chen Z, Hu P, Liu Y, Tu D, Zhu H, Li R, Huang M, Chen X. Angew Chem Int Ed, 2013, 52: 6671–6676CrossRefGoogle Scholar
  45. 45.
    Dou Q, Zhang Y. Langmuir, 2011, 27: 13236–13241CrossRefGoogle Scholar
  46. 46.
    Abdukayum A, Chen JT, Zhao Q, Yan XP. J Am Chem Soc, 2013, 135: 14125–14133CrossRefGoogle Scholar
  47. 47.
    Gourier D, Bessière A, Sharma SK, Binet L, Viana B, Basavaraju N, Priolkar KR. J Phys Chem Solids, 2014, 75: 826–837CrossRefGoogle Scholar
  48. 48.
    Huang B. Phys Chem Chem Phys, 2016, 18: 25946–25974CrossRefGoogle Scholar
  49. 49.
    Manual U, TOPAS V. General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe:, 2000Google Scholar
  50. 50.
    Hill RJ, Craig JR, Gibbs GV. Phys Chem Miner, 1979, 4: 317–339CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qinqin Ma
    • 1
  • Jie Wang
    • 1
  • Wei Zheng
    • 2
  • Qian Wang
    • 1
  • Zhiheng Li
    • 1
  • Hengjiang Cong
    • 1
  • Huijun Liu
    • 3
  • Xueyuan Chen
    • 2
  • Quan Yuan
    • 1
    Email author
  1. 1.Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  2. 2.CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFujianChina
  3. 3.Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and TechnologyWuhan UniversityWuhanChina

Personalised recommendations