Advertisement

Science China Chemistry

, Volume 61, Issue 11, pp 1423–1429 | Cite as

Enhanced lateral flow assay with double conjugates for the detection of exosomes

  • Tingting Wu
  • Yuemeng Yang
  • Yu Cao
  • Yan Huang
  • Li-Ping Xu
  • Xueji Zhang
  • Shutao Wang
Articles
  • 35 Downloads

Abstract

Exosomes are promising biological biomarkers for monitoring a number of diseases, especially cancers. Here, we developed a double gold nanoparticles (GNPs) conjugates based lateral flow assay (D-LFA) for rapidly and sensitively detecting and molecular profiling of exosomes. Based on these two GNPs conjugates, the signal amplification can be achieved without any additional operation. The antibody on the 1st GNPs conjugate could recognize exosomes and form a sandwich format on the test zone. The 2nd GNPs conjugate was designed to bind to the 1st GNPs conjugate to realize signal amplification. This biosensor enabled visual and quantitative detection of exosomes by the accumulation of GNPs on the test zone and showed a low detection limit of 1.3×103 particles/μL, which has been improved 13-fold compared with the normal lateral flow assay. The D-LFA exhibited good sensitivity and reproducibility and has been successfully used for the detection of exosomes in fetal bovine serum, which proved its potential application in practical diagnostics.

Keywords

exosome lateral flow assay double GNPs conjugates visual detection signal amplification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21475009, 21475008) and Beijing Municipal Science & Technology Commission (Z161100000116037).

Supplementary material

11426_2018_9305_MOESM1_ESM.docx (1.8 mb)
Enhanced lateral flow assay with double conjugates for the detection of exosomes

References

  1. 1.
    Colombo M, Raposo G, Théry C. Annu Rev Cell Dev Biol, 2014, 30: 255–289CrossRefGoogle Scholar
  2. 2.
    Shahabipour F, Barati N, Johnston TP, Derosa G, Maffioli P, Sahebkar A. J Cell Physiol, 2017, 232: 1660–1668CrossRefGoogle Scholar
  3. 3.
    Wan S, Zhang L, Wang S, Liu Y, Wu C, Cui C, Sun H, Shi M, Jiang Y, Li L, Qiu L, Tan W. J Am Chem Soc, 2017, 139: 5289–5292CrossRefGoogle Scholar
  4. 4.
    Chiu YJ, Cai W, Shih YRV, Lian I, Lo YH. Small, 2016, 12: 3658–3666CrossRefGoogle Scholar
  5. 5.
    Speicher MR, Pantel K. Nat Biotechnol, 2014, 32: 441–443CrossRefGoogle Scholar
  6. 6.
    Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J. Nat Commun, 2011, 2: 180CrossRefGoogle Scholar
  7. 7.
    Xia Y, Liu M, Wang L, Yan A, He W, Chen M, Lan J, Xu J, Guan L, Chen J. Biosens Bioelectron, 2017, 92: 8–15CrossRefGoogle Scholar
  8. 8.
    Barile L, Vassalli G. Pharmacol Ther, 2017, 174: 63–78CrossRefGoogle Scholar
  9. 9.
    Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C, Teng IT, Shi M, Wu Y, Dong Y, Tan W. ACS Nano, 2017, 11: 3943–3949CrossRefGoogle Scholar
  10. 10.
    Zhou YG, Mohamadi RM, Poudineh M, Kermanshah L, Ahmed S, Safaei TS, Stojcic J, Nam RK, Sargent EH, Kelley SO. Small, 2016, 12: 727–732CrossRefGoogle Scholar
  11. 11.
    Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, Newman GR, Jasani B. J Immunol Methods, 2001, 247: 163–174CrossRefGoogle Scholar
  12. 12.
    Ueda K, Ishikawa N, Tatsuguchi A, Saichi N, Fujii R, Nakagawa H. Sci Rep, 2014, 4: 6232CrossRefGoogle Scholar
  13. 13.
    Zhou H, Yuen PST, Pisitkun T, Gonzales PA, Yasuda H, Dear JW, Gross P, Knepper MA, Star RA. Kidney Int, 2006, 69: 1471–1476CrossRefGoogle Scholar
  14. 14.
    Li Q, Tofaris GK, Davis JJ. Anal Chem, 2017, 89: 3184–3190CrossRefGoogle Scholar
  15. 15.
    Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C. Proc Natl Acad Sci USA, 2016, 113: E968–E977CrossRefGoogle Scholar
  16. 16.
    Hu LM, Luo K, Xia J, Xu GM, Wu CH, Han JJ, Zhang GG, Liu M, Lai WH. Biosens Bioelectron, 2017, 91: 95–103CrossRefGoogle Scholar
  17. 17.
    Du Y, Pothukuchy A, Gollihar JD, Nourani A, Li B, Ellington AD. Angew Chem Int Ed, 2017, 56: 992–996CrossRefGoogle Scholar
  18. 18.
    Le TT, Chang P, Benton DJ, McCauley JW, Iqbal M, Cass AEG. Anal Chem, 2017, 89: 6781–6786CrossRefGoogle Scholar
  19. 19.
    Gao Y, Deng X, Wen W, Zhang X, Wang S. Biosens Bioelectron, 2017, 92: 529–535CrossRefGoogle Scholar
  20. 20.
    Gao X, Xu H, Baloda M, Gurung AS, Xu LP, Wang T, Zhang X, Liu G. Biosens Bioelectron, 2014, 54: 578–584CrossRefGoogle Scholar
  21. 21.
    Peng J, Liu L, Xu L, Song S, Kuang H, Cui G, Xu C. Nano Res, 2016, 10: 108–120CrossRefGoogle Scholar
  22. 22.
    Wang W, Liu L, Song S, Xu L, Kuang H, Zhu J, Xu C. Microchim Acta, 2016, 184: 715–724CrossRefGoogle Scholar
  23. 23.
    Chen Y, Liu L, Xu L, Song S, Kuang H, Cui G, Xu C. Nano Res, 2017, 10: 2833–2844CrossRefGoogle Scholar
  24. 24.
    Raeisossadati MJ, Danesh NM, Borna F, Gholamzad M, Ramezani M, Abnous K, Taghdisi SM. Biosens Bioelectron, 2016, 86: 235–246CrossRefGoogle Scholar
  25. 25.
    Ahmad Raston NH, Nguyen VT, Gu MB. Biosens Bioelectron, 2017, 93: 21–25CrossRefGoogle Scholar
  26. 26.
    Gao X, Xu LP, Zhou SF, Liu G, Zhang X. Am J Biomed Sci, 2014, 41–57Google Scholar
  27. 27.
    Peng H, Tang H, Jiang J. Sci China Chem, 2016, 59: 783–793CrossRefGoogle Scholar
  28. 28.
    Yang W, Li X, Liu G, Zhang B, Zhang Y, Kong T, Tang J, Li D, Wang Z. Biosens Bioelectron, 2011, 26: 3710–3713CrossRefGoogle Scholar
  29. 29.
    Rastogi SK, Gibson CLM, Branen JR, Eric Aston D, Larry Branen A, Hrdlicka PJ. Chem Commun, 2012, 48: 7714–7716CrossRefGoogle Scholar
  30. 30.
    Parolo C, de la Escosura-Muñiz A, Merkoçi A. Biosens Bioelectron, 2013, 40: 412–416CrossRefGoogle Scholar
  31. 31.
    Gao X, Xu LP, Wu T, Wen Y, Ma X, Zhang X. Talanta, 2016, 146: 648–654CrossRefGoogle Scholar
  32. 32.
    Rodríguez MO, Covián LB, García AC, Blanco-López MC. Talanta, 2016, 148: 272–278CrossRefGoogle Scholar
  33. 33.
    Chia BS, Low YP, Wang Q, Li P, Gao Z. Trends Anal Chem, 2017, 86: 93–106CrossRefGoogle Scholar
  34. 34.
    Bastus NG, Comenge J, Puntes V. Langmuir, 2011, 27: 11098–11105CrossRefGoogle Scholar
  35. 35.
    Wu T, Xu T, Xu LP, Huang Y, Shi W, Wen Y, Zhang X. Biosens Bioelectron, 2016, 86: 951–957CrossRefGoogle Scholar
  36. 36.
    Zhuang Y, Wang D, Yin C, Deng H, Sun M, He L, Su Y, Zhu X. Sci China Chem, 2016, 59: 1600–1608CrossRefGoogle Scholar
  37. 37.
    Wu W, Yu L, Fang Z, Lie P, Zeng L. Anal Biochem, 2013, 436: 160–164CrossRefGoogle Scholar
  38. 38.
    Park J, Shin JH, Park JK. Anal Chem, 2016, 88: 3781–3788CrossRefGoogle Scholar
  39. 39.
    Choi DH, Lee SK, Oh YK, Bae BW, Lee SD, Kim S, Shin YB, Kim MG. Biosens Bioelectron, 2010, 25: 1999–2002CrossRefGoogle Scholar
  40. 40.
    Oliveira-Rodríguez M, Serrano-Pertierra E, García AC, López-Martín S, Yañez-Mo M, Cernuda-Morollón E, Blanco-López MC. Biosens Bioelectron, 2017, 87: 38–45CrossRefGoogle Scholar
  41. 41.
    Oliveira-Rodríguez M, López-Cobo S, Reyburn HT, Costa-García A, López-Martín S, Yáñez-Mó M, Cernuda-Morollón E, Paschen A, Valés-Gómez M, Blanco-López MC. J Extracell Vesicles, 2016, 5: 31803CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations