Science China Chemistry

, Volume 61, Issue 12, pp 1587–1593 | Cite as

Mechanically controlled FRET to achieve high-contrast fluorescence switching

  • Shenzhong Mo
  • Lina Tan
  • Bing Fang
  • Zhen Wu
  • Zhiqiang Su
  • Yantu ZhangEmail author
  • Meizhen YinEmail author


Organic luminescent materials with the ability to reversibly switch the luminescence when subjected to external stimuli have attracted considerable interest in recent years. However, luminescent materials with mechanochromic and photochromic dual-responsive properties are rarely reported. Hererin, we designed and synthesized a molecule P1 with dipeptide as a spacer to link rhodamine B and spiropyran moieties. P1 exhibited efficient photochromic properties both in solution and solid state. High-contrast independent fluorescence switch was also realized under the stimulus of external force. Moreover, two-step ring opening reaction and subsequent fluorescence resonance energy transfer process between the donor-acceptor pairs within one single molecule achieved successive color switch by mechanical control. Therefore, this behavior of P1 made it a promising candidate for high-contrast and sensitive optical recording and mechanical sensing system.


spiropyran rhodamine B photochromism mechanochromism fluorescence resonance energy transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21774007, 21574009, 51521062), the Natural Science Foundation of Shaanxi Province, China (2016ZDJC19) and Yan’an Science & Technology Innovation Team (2015CHTD-04).

Supplementary material

11426_2018_9303_MOESM1_ESM.doc (2.1 mb)
Mechanically controlled FRET to achieve high-contrast fluores-cence switching


  1. 1.
    Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J. Chem Soc Rev, 2012, 41: 3878–3896CrossRefGoogle Scholar
  2. 2.
    Wan S, Ma Z, Chen C, Li F, Wang F, Jia X, Yang W, Yin M. Adv Funct Mater, 2016, 26: 353–364CrossRefGoogle Scholar
  3. 3.
    Yan D, Yang H, Meng Q, Lin H, Wei M. Adv Funct Mater, 2014, 24: 587–594CrossRefGoogle Scholar
  4. 4.
    Zhang S, Li J, Wei J, Yin M. Sci Bull, 2018, 63: 101–107CrossRefGoogle Scholar
  5. 5.
    Fang M, Yang J, Liao Q, Gong Y, Xie Z, Chi Z, Peng Q, Li Q, Li Z. J Mater Chem C, 2017, 5: 9879–9885CrossRefGoogle Scholar
  6. 6.
    Wang Z, Zhou F, Wang J, Zhao Z, Qin A, Yu Z, Tang BZ. Sci China Chem, 2018, 61: 76–87CrossRefGoogle Scholar
  7. 7.
    Li Z, Liang R, Xu S, Liu W, Yan D, Wei M, Evans DG, Duan X. Nano Res, 2016, 9: 3828–3838CrossRefGoogle Scholar
  8. 8.
    Yang J, Ren Z, Xie Z, Liu Y, Wang C, Xie Y, Peng Q, Xu B, Tian W, Zhang F, Chi Z, Li Q, Li Z. Angew Chem Int Ed, 2017, 56: 880–884CrossRefGoogle Scholar
  9. 9.
    Mo S, Meng Q, Wan S, Su Z, Yan H, Tang BZ, Yin M. Adv Funct Mater, 2017, 27: 1701210–1701218CrossRefGoogle Scholar
  10. 10.
    Fang X, Yan D. Sci China Chem, 2018, 61: 397–401CrossRefGoogle Scholar
  11. 11.
    Yu T, Ou D, Wang L, Zheng S, Yang Z, Zhang Y, Chi Z, Liu S, Xu J, Aldred MP. Mater Chem Front, 2017, 1: 1900–1904CrossRefGoogle Scholar
  12. 12.
    Tang BZ. Sci China Chem, 2018, 61: 377–378CrossRefGoogle Scholar
  13. 13.
    Lv B, Wu Z, Ji C, Yang W, Yan D, Yin M. J Mater Chem C, 2015, 3: 8519–8525CrossRefGoogle Scholar
  14. 14.
    Yan D, Evans DG. Mater Horiz, 2014, 1: 46–57CrossRefGoogle Scholar
  15. 15.
    Ayranci R, Demirkol DO, Timur S, Ak M. Analyst, 2017, 142: 3407–3415CrossRefGoogle Scholar
  16. 16.
    Wang T, Zhang N, Dai J, Li Z, Bai W, Bai R. ACS Appl Mater Interfaces, 2017, 9: 11874–11881CrossRefGoogle Scholar
  17. 17.
    Xie Y, Ge Y, Peng Q, Li C, Li Q, Li Z. Adv Mater, 2017, 29: 1606829–1606835CrossRefGoogle Scholar
  18. 18.
    Meng X, Qi G, Zhang C, Wang K, Zou B, Ma Y. Chem Commun, 2015, 51: 9320–9323CrossRefGoogle Scholar
  19. 19.
    Meng X, Chen C, Qi G, Li X, Wang K, Zou B, Ma Y. ChemNanoMat, 2017, 3: 569–574CrossRefGoogle Scholar
  20. 20.
    Klajn R. Chem Soc Rev, 2014, 43: 148–184CrossRefGoogle Scholar
  21. 21.
    Wan S, Zheng Y, Shen J, Yang W, Yin M. ACS Appl Mater Interfaces, 2014, 6: 19515–19519CrossRefGoogle Scholar
  22. 22.
    Kundu PK, Olsen GL, Kiss V, Klajn R. Nat Commun, 2014, 5: 3588CrossRefGoogle Scholar
  23. 23.
    Florea L, Scarmagnani S, Benito-Lopez F, Diamond D. Chem Commun, 2014, 50: 924–926CrossRefGoogle Scholar
  24. 24.
    Ma Z, Ji Y, Lan Y, Kuang GC, Jia X. J Mater Chem C, 2018, 6: 2270–2274CrossRefGoogle Scholar
  25. 25.
    Xing Q, Li N, Chen D, Sha W, Jiao Y, Qi X, Xu Q, Lu J. J Mater Chem B, 2014, 2: 1182–1189CrossRefGoogle Scholar
  26. 26.
    Wu S, Luo Y, Zeng F, Chen J, Chen Y, Tong Z. Angew Chem Int Ed, 2007, 46: 7015–7018CrossRefGoogle Scholar
  27. 27.
    Zhou L, Zhang X, Wang Q, Lv Y, Mao G, Luo A, Wu Y, Wu Y, Zhang J, Tan W. J Am Chem Soc, 2014, 136: 9838–9841CrossRefGoogle Scholar
  28. 28.
    Kong L, Wong HL, Tam AYY, Lam WH, Wu L, Yam VWW. ACS Appl Mater Interfaces, 2014, 6: 1550–1562CrossRefGoogle Scholar
  29. 29.
    Kim HJ, Whang DR, Gierschner J, Lee CH, Park SY. Angew Chem Int Ed, 2015, 54: 4330–4333CrossRefGoogle Scholar
  30. 30.
    Wang Z, Ma Z, Wang Y, Xu Z, Luo Y, Wei Y, Jia X. Adv Mater, 2015, 27: 6469–6474CrossRefGoogle Scholar
  31. 31.
    Davis DA, Hamilton A, Yang J, Cremar LD, Van Gough D, Potisek SL, Ong MT, Braun PV, Martínez TJ, White SR, Moore JS, Sottos NR. Nature, 2009, 459: 68–72CrossRefGoogle Scholar
  32. 32.
    Li M, Zhang Q, Zhou YN, Zhu S. Prog Polym Sci, 2018, 79: 26–39CrossRefGoogle Scholar
  33. 33.
    Remón P, Hammarson M, Li S, Kahnt A, Pischel U, Andréasson J. Chem Eur J, 2011, 17: 6492–6500CrossRefGoogle Scholar
  34. 34.
    Zhou W, Chen D, Li J, Xu J, Lv J, Liu H, Li Y. Org Lett, 2007, 9: 3929–3932CrossRefGoogle Scholar
  35. 35.
    Wu Z, Pan K, Lü B, Ma L, Yang W, Yin M. Chem Asian J, 2016, 11: 3102–3106CrossRefGoogle Scholar
  36. 36.
    Qi Q, Li C, Liu X, Jiang S, Xu Z, Lee R, Zhu M, Xu B, Tian W. J Am Chem Soc, 2017, 139: 16036–16039CrossRefGoogle Scholar
  37. 37.
    Kaewtong C, Pulpoka B, Tuntulani T. Dyes Pigments, 2015, 123: 204–211CrossRefGoogle Scholar
  38. 38.
    Qi Q, Qian J, Ma S, Xu B, Zhang SXA, Tian W. Chem Eur J, 2015, 21: 1149–1155CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
  2. 2.College of Chemistry & Chemical EngineeringYan’an UniversityYan’anChina

Personalised recommendations