Advertisement

Science China Chemistry

, Volume 61, Issue 8, pp 947–956 | Cite as

Julolidine-labelled fluorinated block copolymers for the development of two-layer films with highly sensitive vapochromic response

  • Camillo Sorgi
  • Elisa Martinelli
  • Giancarlo Galli
  • Andrea Pucci
Articles
  • 60 Downloads

Abstract

Fluorinated block copolymers composed of a polystyrene (Sx) first block and a polyacrylate second block carrying hydrophobic/lipophobic perfluorohexyl side chains (AF) were prepared by atom transfer radical polymerization (ATRP). Fluorescence emission properties were imparted to the copolymers by incorporation in the second block of a julolidine-based fluorescent molecular rotor (JCBF). The synthesized block copolymers were used as the fluorescent low-surface energy thin top-layer onto a polystyrene bottom-layer to produce novel two-layer film vapochromic sensors. Contact angle and X-ray photoelectron spectroscopy (XPS) measurements revealed that the two-layer film surfaces were hydrophobic and lipophobic at the same time and highly enriched in fluorine content as a result of the effective segregation of the perfluorinated tails to the polymer-air interface. The fluorescence intensity of the two-layer films decreased significantly when they were exposed to vapours of organic solvents, including tetrahydrofurane, chloroform, and trifluorotoluene. However, an AF content-dependent sensing behaviour was also observed, with the two-layer films containing the copolymer with the shorter fluorinated block giving a more rapid and almost quantitative decrease in fluorescence variation. Fluorescence emission of the films was also proved to vary with temperature. Both the vapochromic and thermochromic responses were reversible after successive solicitation cycles. The fluorescence variation of the two-layer films was much more marked than that of the corresponding PS/JCBF blend, thus providing a system potentially applicable as highly sensitive volatile organic compound (VOC) sensor, thanks to the active role of the fluorinated block in promoting the migration of the fluorophore to the outermost surface layers.

Keywords

fluorinated block copolymers fluorescent molecular rotors vapochromism 

Notes

Acknowledgements

This work was supported by the University of Pisa (fondi Progetti di Ricerca di Ateneo, PRA_2017_28). The authors are grateful to Prof. A. Glisenti (University of Padova) for assistance with XPS measurements.

Supplementary material

11426_2018_9302_MOESM1_ESM.docx (2.3 mb)
Julolidine-labelled fluorinated block copolymers for the development of two-layer films with highly sensitive vapochromic response

References

  1. 1.
    Blanazs A, Armes SP, Ryan AJ. Macromol Rapid Commun, 2009, 30: 267–277CrossRefPubMedGoogle Scholar
  2. 2.
    Mai Y, Eisenberg A. Chem Soc Rev, 2012, 41: 5969–5985CrossRefPubMedGoogle Scholar
  3. 3.
    Matyjaszewski K, Xia J. Chem Rev, 2001, 101: 2921–2990CrossRefPubMedGoogle Scholar
  4. 4.
    Riess G. Prog Polym Sci, 2003, 28: 1107–1170CrossRefGoogle Scholar
  5. 5.
    Zhao B, Brittain WJ. Prog Polym Sci, 2000, 25: 677–710CrossRefGoogle Scholar
  6. 6.
    Galli G, Martinelli E. Macromol Rapid Commun, 2017, 38: 1600704CrossRefGoogle Scholar
  7. 7.
    Martinelli E, Del Moro I, Galli G, Barbaglia M, Bibbiani C, Mennillo E, Oliva M, Pretti C, Antonioli D, Laus M. ACS Appl Mater Interfaces, 2015, 7: 8293–8301CrossRefPubMedGoogle Scholar
  8. 8.
    Martinelli E, Gunes D, Wenning BM, Ober CK, Finlay JA, Callow ME, Callow JA, Di Fino A, Clare AS, Galli G. Biofouling, 2016, 32: 81–93CrossRefPubMedGoogle Scholar
  9. 9.
    Hansen NML, Jankova K, Hvilsted S. Eur Polym J, 2007, 43: 255–293CrossRefGoogle Scholar
  10. 10.
    Harrison WL, Hickner MA, Kim YS, McGrath JE. Fuel Cells, 2005, 5: 201–212CrossRefGoogle Scholar
  11. 11.
    Imae T. Curr Opin Colloid Interface Sci, 2003, 8: 307–314CrossRefGoogle Scholar
  12. 12.
    Kharitonov AP. Prog Org Coatings, 2008, 61: 192–204CrossRefGoogle Scholar
  13. 13.
    Sawada H. Prog Polym Sci, 2007, 32: 509–533CrossRefGoogle Scholar
  14. 14.
    Hikita M, Tanaka K, Nakamura T, Kajiyama T, Takahara A. Langmuir, 2004, 20: 5304–5310CrossRefPubMedGoogle Scholar
  15. 15.
    Li Y, Zheng X, Xia Z, Lu M. Prog Org Coatings, 2016, 97: 122–132CrossRefGoogle Scholar
  16. 16.
    Yamamoto I. Fluoroalkyl acrylate polymers and their applications. In: Ameduri B, Sawada H, Eds. Fluorinated Polymers: Volume 2: Applications. London: Royal Society of Chemistry, 2017. 32–53Google Scholar
  17. 17.
    Grate JW. Chem Rev, 2008, 108: 726–745CrossRefPubMedGoogle Scholar
  18. 18.
    Liang G, Ren F, Gao H, Wu Q, Zhu F, Tang BZ. ACS Sens, 2016, 1: 1272–1278CrossRefGoogle Scholar
  19. 19.
    Broza YY, Haick H. Nanomedicine, 2013, 8: 785–806CrossRefPubMedGoogle Scholar
  20. 20.
    Echeverría JC, Faustini M, Garrido JJ. Sens Actuat B-Chem, 2016, 222: 1166–1174CrossRefGoogle Scholar
  21. 21.
    Elosua C, Matias I, Bariain C, Arregui F. Sensors, 2006, 6: 1440–1465CrossRefGoogle Scholar
  22. 22.
    Evyapan M, Hanoosh WS, Hassan AK. Anal Lett, 2017, 50: 2579–2594CrossRefGoogle Scholar
  23. 23.
    Hromadka J, Korposh S, Partridge M, James SW, Davis F, Crump D, Tatam RP. Sensors, 2017, 17: 205–216CrossRefGoogle Scholar
  24. 24.
    Hromadka J, Tokay B, Correia R, Morgan SP, Korposh S. Sens Actuat B-Chem, 2018, 260: 685–692CrossRefGoogle Scholar
  25. 25.
    Jiang Y, Li G, Zhu D, Su Z, Bryce MR. J Mater Chem C, 2017, 5: 12189–12193CrossRefGoogle Scholar
  26. 26.
    Ng CL, Kai FM, Tee MH, Tan N, Hemond HF. Sensors, 2018, 18: 265CrossRefGoogle Scholar
  27. 27.
    Terra IAA, Sanfelice RC, Valente GT, Correa DS. J Appl Polym Sci, 2018, 135: 46128CrossRefGoogle Scholar
  28. 28.
    Zhao C, Gan X, Yuan Q, Hu S, Fang L, Zhao J. Adv Opt Mater, 2018, 6: 1700882CrossRefGoogle Scholar
  29. 29.
    Gao M, Tang BZ. ACS Sens, 2017, 2: 1382–1399CrossRefPubMedGoogle Scholar
  30. 30.
    Liang G, Ren F, Gao H, Zhu F, Wu Q, Tang BZ. J Mater Chem A, 2017, 5: 2115–2122CrossRefGoogle Scholar
  31. 31.
    Jenkin ME, Saunders SM, Pilling MJ. Atmos Environ, 1997, 31: 81–104CrossRefGoogle Scholar
  32. 32.
    Kim YM, Harrad S, Harrison RM. Environ Sci Technol, 2001, 35: 997–1004CrossRefPubMedGoogle Scholar
  33. 33.
    Martini G, Martinelli E, Ruggeri G, Galli G, Pucci A. Dyes Pigments, 2015, 113: 47–54CrossRefGoogle Scholar
  34. 34.
    Iasilli G, Martini F, Minei P, Ruggeri G, Pucci A. Faraday Discuss, 2017, 196: 113–129CrossRefPubMedGoogle Scholar
  35. 35.
    Minei P, Pucci A. Polym Int, 2016, 65: 609–620CrossRefGoogle Scholar
  36. 36.
    Minei P, Ahmad M, Barone V, Brancato G, Passaglia E, Bottari G, Pucci A. Polym Adv Technol, 2016, 27: 429–435CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Minei P, Koenig M, Battisti A, Ahmad M, Barone V, Torres T, Guldi DM, Brancato G, Bottari G, Pucci A. J Mater Chem C, 2014, 2: 9224–9232CrossRefGoogle Scholar
  38. 38.
    Borelli M, Iasilli G, Minei P, Pucci A. Molecules, 2017, 22: 1306CrossRefGoogle Scholar
  39. 39.
    Zhu Q, Yang W, Zheng S, Sung HHY, Williams ID, Liu S, Tang BZ. J Mater Chem C, 2016, 4: 7383–7386CrossRefGoogle Scholar
  40. 40.
    Allen BD, Benniston AC, Harriman A, Rostron SA, Yu C. Phys Chem Chem Phys, 2005, 7: 3035–3040CrossRefPubMedGoogle Scholar
  41. 41.
    Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA. Bioorg Chem, 2005, 33: 415–425CrossRefPubMedGoogle Scholar
  42. 42.
    Haidekker MA, Nipper M, Mustafic A, Lichlyter D, Dakanali M, Theodorakis EA. Dyes with segmental mobility: Molecular rotors. In: Advanced Fluorescence Reporters in Chemistry and Biology I. New York: Springer, 2010. 267–308Google Scholar
  43. 43.
    Haidekker MA, Theodorakis EA. Org Biomol Chem, 2007, 5: 1669–1678CrossRefPubMedGoogle Scholar
  44. 44.
    Haidekker MA, Theodorakis EA. J Biol Eng, 2010, 4: 11CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kuimova MK, Yahioglu G, Levitt JA, Suhling K. J Am Chem Soc, 2008, 130: 6672–6673CrossRefPubMedGoogle Scholar
  46. 46.
    Sutharsan J, Lichlyter D, Wright NE, Dakanali M, Haidekker MA, Theodorakis EA. Tetrahedron, 2010, 66: 2582–2588CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhou F, Shao J, Yang Y, Zhao J, Guo H, Li X, Ji S, Zhang Z. Eur J Org Chem, 2011, 2011: 4773–4787CrossRefGoogle Scholar
  48. 48.
    Hong Y, Lam JWY, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388CrossRefPubMedGoogle Scholar
  49. 49.
    Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ. Adv Mater, 2014, 26: 5429–5479CrossRefPubMedGoogle Scholar
  50. 50.
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940CrossRefPubMedGoogle Scholar
  51. 51.
    Guazzelli E, Masotti E, Biver T, Pucci A, Martinelli E, Galli G. J Polym Sci Part A-Polym Chem, 2018, 56: 797–804CrossRefGoogle Scholar
  52. 52.
    Martinelli E, Fantoni C, Galli G, Gallot B, Glisenti A. Mol Crysts Liquid Crysts, 2009, 500: 51–62CrossRefGoogle Scholar
  53. 53.
    Owens DK, Wendt RC. J Appl Polym Sci, 1969, 13: 1741–1747CrossRefGoogle Scholar
  54. 54.
    Kaelble DH. J Adhes, 1970, 2: 66–81CrossRefGoogle Scholar
  55. 55.
    Shirley DA. Phys Rev B, 1972, 5: 4709–4714CrossRefGoogle Scholar
  56. 56.
    Maier G. Prog Polym Sci, 2001, 26: 3–65CrossRefGoogle Scholar
  57. 57.
    Martinelli E, Sarvothaman MK, Alderighi M, Galli G, Mielczarski E, Mielczarski JA. J Polym Sci A-Polym Chem, 2012, 50: 2677–2686CrossRefGoogle Scholar
  58. 58.
    Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, Hexemer A, Sohn KE, Kramer EJ, Fischer DA. Biomacromolecules, 2006, 7: 1449–1462CrossRefPubMedGoogle Scholar
  59. 59.
    Nishino T, Urushihara Y, Meguro M, Nakamae K. J Colloid Interface Sci, 2005, 283: 533–538CrossRefPubMedGoogle Scholar
  60. 60.
    Galli G, Martinelli E, Chiellini E, Ober CK, Glisenti A. Mol Crysts Liquid Crysts, 2005, 441: 211–226CrossRefGoogle Scholar
  61. 61.
    Martinelli E, Glisenti A, Gallot B, Galli G. Macromol Chem Phys, 2009, 210: 1746–1753CrossRefGoogle Scholar
  62. 62.
    Borkar S, Jankova K, Siesler HW, Hvilsted S. Macromolecules, 2004, 37: 788–794CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly
  2. 2.National Interuniversity Consortium of Materials Science and TechnologyUdR PisaPisaItaly

Personalised recommendations