Advertisement

Science China Chemistry

, Volume 61, Issue 8, pp 925–931 | Cite as

Aggregation-induced emission and thermally activated delayed fluorescence of 2,6-diaminobenzophenones

  • Masaki Shimizu
  • Masaki Nakatani
  • Kenta Nishimura
Articles
  • 99 Downloads

Abstract

Exploration of novel organic luminophores that exhibit thermally activated delayed fluorescence (TADF) in the aggregated state is very crucial for advance of delayed luminescence-based applications such as time-gated bio-sensing and temperature sensing. We report herein that synthesis, photophysical properties, molecular and crystal structures, and theoretical calculations of 2,6-bis (diarylamino)benzophenones. Absorption spectra in solution and calculations using density functional theory (DFT) method revealed that the optical excitation took place through intramolecular charge-transfer from one diarylamino moiety to an aroyl group. While the benzophenones did not luminesce in solution, the solids of the benzophenones emitted green light with moderate-to-good quantum yields. Thus, the benzophenones exhibit aggregation-induced emission. Based on the lifetime measurement, the green emission of the solids was found to include TADF. The emergence of the TADF is supported by the small energy gap between the excited singlet and triplet states, which was estimated by time-dependent DFT calculations. Thin films of poly(methyl methacrylate) doped by the benzophenones also showed green prompt and delayed fluorescence whose lifetimes were in the order of microseconds. Linear correlation between logarithm value of TADF lifetime and temperature was observed with the benzophenone in powder, suggesting that the benzophenones can serve as molecular thermometers workable under aqueous conditions.

Keywords

donor-acceptor system delayed fluorescence temperature sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Grants-in-Aid for JSPS KAKENHI (15H03795), MEXT KAKENHI 15K13671, the Nagase Science and Technology Foundation, and the Ogasawara Foundation for the Promotion of Science and Engineering.

References

  1. 1.
    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238CrossRefPubMedGoogle Scholar
  2. 2.
    Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T, Adachi C. Nat Commun, 2014, 5: 4016CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C. Nat Photon, 2014, 8: 326–332CrossRefGoogle Scholar
  4. 4.
    Kaji H, Suzuki H, Fukushima T, Shizu K, Suzuki K, Kubo S, Komino T, Oiwa H, Suzuki F, Wakamiya A, Murata Y, Adachi C. Nat Commun, 2015, 6: 8476CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Marriott G, Clegg RM, Arndt-Jovin DJ, Jovin TM. Biophys J, 1991, 60: 1374–1387Google Scholar
  6. 6.
    Carretero AS, Castillo AS, Gutiérrez AF. Crit Rev Anal Chem, 2005, 35: 3–14CrossRefGoogle Scholar
  7. 7.
    Suhling K. French PMW, Phillips D. Photochem Photobiol Sci, 2005, 4: 13–22CrossRefPubMedGoogle Scholar
  8. 8.
    Xiong X, Song F, Wang J, Zhang Y, Xue Y, Sun L, Jiang N, Gao P, Tian L, Peng X. J Am Chem Soc, 2014, 136: 9590–9597CrossRefPubMedGoogle Scholar
  9. 9.
    Shimizu M, Hiyama T. Chem Asian J, 2010, 5: 1516–1531CrossRefPubMedGoogle Scholar
  10. 10.
    Li Q, Li Z. Adv Sci, 2017, 4: 1600484CrossRefGoogle Scholar
  11. 11.
    Wong MY, Zysman-Colman E. Adv Mater, 2017, 29: 1605444CrossRefGoogle Scholar
  12. 12.
    Im Y, Kim M, Cho YJ, Seo JA, Yook KS, Lee JY. Chem Mater, 2017, 29: 1946–1963CrossRefGoogle Scholar
  13. 13.
    Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Chem Soc Rev, 2017, 46: 915–1016CrossRefPubMedGoogle Scholar
  14. 14.
    Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv Mater, 2014, 26: 7931–7958CrossRefPubMedGoogle Scholar
  15. 15.
    Chen B, Sun X, Evans RE, Zhou R, Demas JN, Trindle CO, Zhang G. J Phys Chem A, 2015, 119: 8854–8859CrossRefPubMedGoogle Scholar
  16. 16.
    Xu S, Liu T, Mu Y, Wang YF, Chi Z, Lo CC, Liu S, Zhang Y, Lien A, Xu J. Angew Chem Int Ed, 2015, 54: 874–878CrossRefGoogle Scholar
  17. 17.
    Xie Z, Chen C, Xu S, Li J, Zhang Y, Liu S, Xu J, Chi Z. Angew Chem Int Ed, 2015, 54: 7181–7184CrossRefGoogle Scholar
  18. 18.
    Gan S, Luo W, He B, Chen L, Nie H, Hu R, Qin A, Zhao Z, Tang BZ. J Mater Chem C, 2016, 4: 3705–3708CrossRefGoogle Scholar
  19. 19.
    Furue R, Nishimoto T, Park IS, Lee J, Yasuda T. Angew Chem Int Ed, 2016, 55: 7171–7175CrossRefGoogle Scholar
  20. 20.
    Tsujimoto H, Ha DG, Markopoulos G, Chae HS, Baldo MA, Swager TM. J Am Chem Soc, 2017, 139: 4894–4900CrossRefPubMedGoogle Scholar
  21. 21.
    Guo J. Li X-L, Nie H, Luo W, Gan S, Hu S, Hu R, Qin A, Zhao Z, Su S-J, Tang BZ. Adv Funct Mater, 2017, 1606458Google Scholar
  22. 22.
    Wang T, Wu Z, Sun W, Jin S, Zhang X, Zhou C, Jiang J, Luo Y, Zhang G. J Phys Chem A, 2017, 121: 7183–7190CrossRefPubMedGoogle Scholar
  23. 23.
    Guo J, Li XL, Nie H, Luo W, Hu R, Qin A, Zhao Z, Su SJ, Tang BZ. Chem Mater, 2017, 29: 3623–3631CrossRefGoogle Scholar
  24. 24.
    Shimizu M, Takeda Y, Higashi M, Hiyama T. Angew Chem Int Ed, 2009, 48: 3653–3656CrossRefGoogle Scholar
  25. 25.
    Shimizu M, Asai Y, Takeda Y, Yamatani A, Hiyama T. Tetrahedron Lett, 2011, 52: 4084–4089CrossRefGoogle Scholar
  26. 26.
    Shimizu M, Takeda Y, Higashi M, Hiyama T. Chem Asian J, 2011, 6: 2536–2544CrossRefPubMedGoogle Scholar
  27. 27.
    Shimizu M, Kaki R, Takeda Y, Hiyama T, Nagai N, Yamagishi H, Furutani H. Angew Chem Int Ed, 2012, 51: 4095–4099CrossRefGoogle Scholar
  28. 28.
    Shimizu M, Tamagawa T. Eur. Org Chem, 2015, 2015: 291–295CrossRefGoogle Scholar
  29. 29.
    Shimizu M, Fukui H, Natakani M, Sakaguchi H. Eur. Org Chem, 2016, 2016: 5950–5956CrossRefGoogle Scholar
  30. 30.
    Shimizu M, Fukui H, Shigitani R. Jnl Chin Chem Soc, 2016, 63: 317–322CrossRefGoogle Scholar
  31. 31.
    Shimizu M, Kimura A, Sakaguchi H. Eur. Org Chem, 2016, 2016: 467–473CrossRefGoogle Scholar
  32. 32.
    Shimizu M, Shigitani R, Nakatani M, Kuwabara K, Miyake Y, Tajima K, Sakai H, Hasobe T. J Phys Chem C, 2016, 120: 11631–11639CrossRefGoogle Scholar
  33. 33.
    Shimizu M, Kinoshita T, Shigitani R, Miyake Y, Tajima K. Mater Chem Front, 2018, 2: 347–354CrossRefGoogle Scholar
  34. 34.
    Shimizu M, Nakatani M. Eur. Org Chem, 2017, 2017: 4695–4702CrossRefGoogle Scholar
  35. 35.
    Mei J. Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940CrossRefPubMedGoogle Scholar
  36. 36.
    Mei J, Hong Y. Lam JWY, Qin A, Tang Y, Tang BZ. Adv Mater, 2014, 26: 5429–5479CrossRefPubMedGoogle Scholar
  37. 37.
    CCDC 1840378 (for 1b) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data CentreGoogle Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, revision D. 01. Wallingford: Gaussian, Inc., 2013Google Scholar
  39. 39.
    Schrum KF, Williams AM, Haerther SA, Ben-Amotz D. Anal Chem, 1994, 66: 2788–2790CrossRefGoogle Scholar
  40. 40.
    Fister JC, Rank D, Harris JM. Anal Chem, 1995, 67: 4269–4275CrossRefGoogle Scholar
  41. 41.
    Uchiyama S. Prasanna de Silva A, Iwai K. J Chem Educ, 2006, 83: 720–727CrossRefGoogle Scholar
  42. 42.
    Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD. Nanoscale, 2012, 4: 4799–4829CrossRefPubMedGoogle Scholar
  43. 43.
    McLaurin EJ, Bradshaw LR, Gamelin DR. Chem Mater, 2013, 25: 1283–1292CrossRefGoogle Scholar
  44. 44.
    Bai T, Gu N. Small, 2016, 12: 4590–4610CrossRefPubMedGoogle Scholar
  45. 45.
    Uchiyama S, Gota C, Tsuji T, Inada N. Chem Commun, 2017, 53: 10976–10992CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Masaki Shimizu
    • 1
  • Masaki Nakatani
    • 1
  • Kenta Nishimura
    • 1
  1. 1.Faculty of Molecular Chemistry and EngineeringKyoto Institute of TechnologyKyotoJapan

Personalised recommendations