Advertisement

Science China Chemistry

, Volume 61, Issue 10, pp 1243–1260 | Cite as

Theranostic nanomedicine by surface nanopore engineering

  • Zhenli Li
  • Luodan Yu
  • Tian Yang
  • Yu Chen
Reviews
  • 20 Downloads

Abstract

Theranostic nanomedicine that integrates diagnostic and therapeutic agents into one nanosystem has gained considerable momentum in the field of cancer treatment. Among diverse strategies for achieving theranostic capabilities, surface-nanopore engineering based on mesoporous silica coating has attracted great interest because of their negligible cytotoxicity and chemically active surface that can be easily modified to introduce various functional groups (e.g., −COOH, −NH2, −SH, etc.) via silanization, which can satisfy various requirements of conjugating biological molecules or functional nanoparticles. In addition, the nanopore-engineered biomaterials possess large surface area and high pore volume, ensuring desirable loading of therapeutic guest molecules. In this review, we comprehensively summarize the synthetic procedure/paradigm of nanopore engineering and further broad theranostic applications. Such nanopore-engineering strategy endows the biocompatible nanocomposites (e.g., Au, Ag, graphene, upconversion nanoparticles, Fe3O4, MXene, etc.) with versatile functional moieties, which enables the development of multifunctional nanoplatforms for multimodal diagnostic bio-imaging, photothermal therapy, photodynamic therapy, targeted drug delivery, synergetic therapy and imaging-guided therapies. Therefore, mesoporous silica-based surface-nanopore engineering integrates intriguing unique features for broadening the biomedical applications of the single mono-functional nanosystem, facilitating the development and further clinical translation of theranostic nanomedicine.

Keywords

mesoporous silica nanopore engineering theranostic cancer nanomedicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0203700), the National Natural Science Foundation of China (51722211, 51672303, 81472284, 81672699), the Program of Shanghai Academic Research Leader (18XD1404300) and Young Elite Scientist Sponsorship Program by CAST (2015QNRC001).

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. CA Cancer J Clin, 2012, 65: 87–108CrossRefGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. CA-. Cancer J Clin, 2013, 63: 11–30CrossRefGoogle Scholar
  3. 3.
    GBD 201. Mortality and Causes of Death Collaborators. Lancet, 2015, 385: 117–171Google Scholar
  4. 4.
    Sun C, Lee JSH, Zhang M. Adv Drug Deliver Rev, 2008, 60: 1252–1265CrossRefGoogle Scholar
  5. 5.
    Bharali DJ, Mousa SA. Pharm Ther, 2010, 128: 324–335CrossRefGoogle Scholar
  6. 6.
    Chaffer CL, Weinberg RA. Science, 2011, 331: 1559–1564CrossRefPubMedGoogle Scholar
  7. 7.
    Levinson AD. Science, 2010, 328: 137CrossRefPubMedGoogle Scholar
  8. 8.
    Couzin J. Science, 2008, 321: 1146a–1147a.CrossRefGoogle Scholar
  9. 9.
    Biankin AV, Piantadosi S, Hollingsworth SJ. Nature, 2015, 526: 361–370CrossRefGoogle Scholar
  10. 10.
    Obenauf AC, Zou Y, Ji AL, Vanharanta S, Shu W, Shi H, Kong X, Bosenberg MC, Wiesner T, Rosen N, Lo RS, Massagué J. Nature, 2015, 520: 368–372CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Naldini L. Nature, 2015, 526: 351–360CrossRefPubMedGoogle Scholar
  12. 12.
    Schmidt C. Nature, 2015, 527: S10–S11CrossRefPubMedGoogle Scholar
  13. 13.
    Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, Kotarski J, Tarkowski R, Dou Y, Cho K, Hensley-Alford S, Munkarah A, Liu R, Zou W. Nature, 2015, 527: 249–253CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mauceri HJ, Hanna NN, Beckett MA, Gorski DH, Staba MJ, Stellato KA, Bigelow K, Heimann R, Gately S, Dhanabal M, Soff GA, Sukhatme VP, Kufe DW, Weichselbaum RR. Nature, 1998, 394: 287–291CrossRefPubMedGoogle Scholar
  15. 15.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nat Nanotech, 2007, 2: 751–760CrossRefGoogle Scholar
  16. 16.
    Sanhai WR, Sakamoto JH, Canady R, Ferrari M. Nat Nanotech, 2008, 3: 242–244CrossRefGoogle Scholar
  17. 17.
    Davis ME, Chen ZG, Shin DM. Nat Rev Drug Discov, 2008, 7: 771–782CrossRefPubMedGoogle Scholar
  18. 18.
    Lammers T, Hennink WE, Storm G. Br J Cancer, 2008, 99: 392–397CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen Y, Cheng L, Dong Z, Chao Y, Lei H, Zhao H, Wang J, Liu Z. Angew Chem Int Ed, 2017, 56: 12991–12996CrossRefGoogle Scholar
  20. 20.
    Attia MF, Anton N, Chiper M, Akasov R, Anton H, Messaddeq N, Fournel S, Klymchenko AS, Mély Y, Vandamme TF. AC. Nano, 2014, 8: 10537–10550CrossRefGoogle Scholar
  21. 21.
    Qiao C, Yang J, Shen Q, Liu R, Li Y, Shi Y, Chen J, Shen Y, Xiao Z, Weng J, Zhang X. Adv Mater, 2018, 30: 1705054CrossRefGoogle Scholar
  22. 22.
    Wang X, Wu Y, Soesbe TC, Yu J, Zhao P, Kiefer GE, Sherry AD. Angew Chem Int Ed, 2015, 54: 8662–8664CrossRefGoogle Scholar
  23. 23.
    Cheng Y, Wang J, Qiu Z, Zheng X, Leung NLC, Lam JWY, Tang BZ. Adv Mater, 2017, 29: 1703900CrossRefGoogle Scholar
  24. 24.
    Wang W, Cheng D, Gong F, Miao X, Shuai X. Adv Mater, 2012, 24: 115–120CrossRefPubMedGoogle Scholar
  25. 25.
    Tang W, Yang Z, Wang S, Wang Z, Song J, Yu G, Fan W, Dai Y, Wang J, Shan L, Niu G, Fan Q, Chen X. ACS Nano, 2018, 12: 2610–2622CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou J, Jiang Y, Hou S, Upputuri PK, Wu D, Li J, Wang P, Zhen X, Pramanik M, Pu K, Duan H. AC. Nano, 2018, 12: 2643–2651CrossRefGoogle Scholar
  27. 27.
    Zhu P, Chen Y, Shi J. AC. Nano, 2018, 12: 3780–3795CrossRefGoogle Scholar
  28. 28.
    Huang P, Qian X, Chen Y, Yu L, Lin H, Wang L, Zhu Y, Shi J. Am Chem Soc, 2017, 139: 1275–1284CrossRefGoogle Scholar
  29. 29.
    Zhang W, Lu J, Gao X, Li P, Zhang W, Ma Y, Wang H, Tang B. Angew Chem Int Ed, 2018, 57: 4891–4896CrossRefGoogle Scholar
  30. 30.
    Song X, Feng L, Liang C, Yang K, Liu Z. Nano Lett, 2016, 16: 6145–6153CrossRefPubMedGoogle Scholar
  31. 31.
    Nam J, Son S, Ochyl LJ, Kuai R, Schwendeman A, Moon JJ. Nat Commun, 2018, 9: 1074CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang X, Ma Y, Sheng X, Wang Y, Xu H. Nano Lett, 2018, 18: 2217–2225CrossRefPubMedGoogle Scholar
  33. 33.
    Xie J, Lee S, Chen X. Adv Drug Deliver Rev, 2010, 62: 1064–1079CrossRefGoogle Scholar
  34. 34.
    Caruthers SD, Wickline SA, Lanza GM. Curr Opin Biotech, 2007, 18: 26–30CrossRefPubMedGoogle Scholar
  35. 35.
    Wang L, Zhang H, Qin A, Jin Q, Tang BZ, Ji J. Sci China Chem, 2016, 59: 1609–1615CrossRefGoogle Scholar
  36. 36.
    Lammers T, Kiessling F, Hennink WE, Storm G. Mol Pharm, 2010, 7: 1899–1912CrossRefPubMedGoogle Scholar
  37. 37.
    Yu B, Goel S, Ni D, Ellison PA, Siamof CM, Jiang D, Cheng L, Kang L, Yu F, Liu Z, Barnhart TE, He Q, Zhang H, Cai W. Adv Mater, 2018, 30: 1704934CrossRefGoogle Scholar
  38. 38.
    Liu S, Pan J, Liu J, Ma Y, Qiu F, Mei L, Zeng X, Pan G. Small, 2018, 14: 1703968CrossRefGoogle Scholar
  39. 39.
    Zhu Y, Wen L, Shao S, Tan Y, Meng T, Yang X, Liu Y, Liu X, Yuan H, Hu F. Biomaterials, 2018, 161: 33–46CrossRefPubMedGoogle Scholar
  40. 40.
    Sahoo AK, Kanchi S, Mandal T, Dasgupta C, Maiti PK. AC. Appl Mater Interfaces, 2018, 10: 6168–6179CrossRefGoogle Scholar
  41. 41.
    Kapoor B, Singh SK, Gulati M, Gupta R, Vaidya Y. Sci World J, 2014, 2014: 1–17CrossRefGoogle Scholar
  42. 42.
    Samad A, Sultana Y, Aqil M. CDD, 2007, 4: 297–305CrossRefGoogle Scholar
  43. 43.
    Kedar U, Phutane P, Shidhaye S, Kadam V. Nanomed-Nanotechnol Biol Med, 2010, 6: 714–729CrossRefGoogle Scholar
  44. 44.
    Nishiyama N, Kataoka K. Pharm Ther, 2006, 112: 630–648CrossRefGoogle Scholar
  45. 45.
    Prabhu P, Patravale V. Biomed Nanotechnol, 2012, 8: 859–882CrossRefGoogle Scholar
  46. 46.
    Chen X, Gambhir SS, Cheon J. Acc Chem Res, 2011, 44: 841CrossRefPubMedGoogle Scholar
  47. 47.
    Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J. Nano Lett, 2006, 6: 2427–2430CrossRefPubMedGoogle Scholar
  48. 48.
    Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Biomaterials, 2008, 29: 4012–4021CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yuan Y, Ding Z, Qian J, Zhang J, Xu J, Dong X, Han T, Ge S, Luo Y, Wang Y, Zhong K, Liang G. Nano Lett, 2016, 16: 2686–2691CrossRefPubMedGoogle Scholar
  50. 50.
    Li C, Chen T, Ocsoy I, Zhu G, Yasun E, You M, Wu C, Zheng J, Song E, Huang CZ, Tan W. Adv Funct Mater, 2014, 24: 1772–1780CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J. Am Chem Soc, 2005, 127: 5732–5733CrossRefGoogle Scholar
  52. 52.
    Roullin VG, Deverre JR, Lemaire L, Hindré F, Venier-Julienne MC, Vienet R, Benoit JP. Eur J Pharm Biopharm, 2002, 53: 293–299CrossRefPubMedGoogle Scholar
  53. 53.
    Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D. Cancer Res, 1996, 56: 4686–4693PubMedGoogle Scholar
  54. 54.
    Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, Wang L, Tang R, Feng Q, Hamada Y, Gonda K, Hu Z, Wu X, Jiang X. Angew Chem Int Ed, 2018, 57: 1491–1496CrossRefGoogle Scholar
  55. 55.
    Gao J, Sanchez-Purra M, Huang H, Wang S, Chen Y, Yu X, Luo Q, Hamad-Schifferli K, Liu S. Sci China Chem, 2017, 60: 1219–1229CrossRefGoogle Scholar
  56. 56.
    Cooper DR, Bekah D, Nadeau JL. Front Chem, 2014, 2: 86CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ. Biomaterials, 2012, 33: 6408–6419CrossRefPubMedGoogle Scholar
  58. 58.
    Wang S, Li X, Chen Y, Cai X, Yao H, Gao W, Zheng Y, An X, Shi J, Chen H. Adv Mater, 2015, 27: 2775–2782CrossRefPubMedGoogle Scholar
  59. 59.
    Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X, Feng L, Sun B, Liu Z. Adv Mater, 2014, 26: 3433–3440CrossRefPubMedGoogle Scholar
  60. 60.
    Wang H, Zhong L, Liu Y, Xu X, Xing C, Wang M, Bai SM, Lu CH, Yang HH. Chem Commun, 2018, 54: 3142–3145CrossRefGoogle Scholar
  61. 61.
    Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Am Chem Soc, 2015, 137: 11376–11382CrossRefGoogle Scholar
  62. 62.
    Han X, Huang J, Lin H, Wang Z, Li P, Chen Y. Adv Healthc Mater, 2018, 7: 1701394CrossRefGoogle Scholar
  63. 63.
    Lin H, Wang Y, Gao S, Chen Y, Shi J. Adv Mater, 2018, 30: 1703284CrossRefGoogle Scholar
  64. 64.
    Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, Huang W, Chen P, Shao J, Dong X. AC. Appl Mater Interfaces, 2017, 9: 40077–40086CrossRefGoogle Scholar
  65. 65.
    Lin H, Gao S, Dai C, Chen Y, Shi J. Am Chem Soc, 2017, 139: 16235–16247CrossRefGoogle Scholar
  66. 66.
    Lin H, Wang X, Yu L, Chen Y, Shi J. Nano Lett, 2017, 17: 384–391CrossRefPubMedGoogle Scholar
  67. 67.
    Dai C, Zhang S, Liu Z, Wu R, Chen Y. AC. Nano, 2017, 11: 9467–9480CrossRefGoogle Scholar
  68. 68.
    Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T, Choi SH, Kim DH. Nat Nanotech, 2016, 11: 566–572CrossRefGoogle Scholar
  69. 69.
    Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X, Huang R. Am Chem Soc, 2013, 135: 4799–4804CrossRefGoogle Scholar
  70. 70.
    Gorelikov I, Matsuura N. Nano Lett, 2008, 8: 369–373CrossRefPubMedGoogle Scholar
  71. 71.
    Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS. Acc Chem Res, 2014, 47: 3481–3493CrossRefPubMedGoogle Scholar
  72. 72.
    Laranjeira M, Shirosaki Y, Yoshimats Yasutomi S, Miyazaki T, Monteiro FJ. J Mater Sci-Mater Med, 2017, 28: 46CrossRefPubMedGoogle Scholar
  73. 73.
    Liu JN, Bu WB, Shi JL. Acc Chem Res, 2015, 48: 1797–1805CrossRefPubMedGoogle Scholar
  74. 74.
    Hardikar VV, Matijević E. Colloid Interface Sci, 2000, 221: 133–136CrossRefGoogle Scholar
  75. 75.
    Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzán LM. Colloid Interface Sci, 2005, 283: 392–396CrossRefGoogle Scholar
  76. 76.
    Zhao Y, Lin LN, Lu Y, Gao HL, Chen SF, Yang P, Yu SH. Adv Healthcare Mater, 2012, 1: 327–331CrossRefGoogle Scholar
  77. 77.
    Jaber J, Mohsen E. Colloids Surfs B-Biointerfaces, 2013, 102: 265–272CrossRefGoogle Scholar
  78. 78.
    Wu S, Wang H, Tao S, Wang C, Zhang L, Liu Z, Meng C. Anal Chim Acta, 2011, 686: 81–86CrossRefPubMedGoogle Scholar
  79. 79.
    Chen FH, Zhang LM, Chen QT, Zhang Y, Zhang ZJ. Chem Commun, 2010, 46: 8633–8635CrossRefGoogle Scholar
  80. 80.
    Xu H, Cui L, Tong N, Gu H. Am Chem Soc, 2006, 128: 15582–15583CrossRefGoogle Scholar
  81. 81.
    Bruchez Moronne M, Gin P, Weiss S, Paul Alivisatos A. Science, 1998, 281: 2013–2016CrossRefPubMedGoogle Scholar
  82. 82.
    Majeed J, Pradhan L, Ningthoujam RS, Vatsa RK, Bahadur D, Tyagi AK. Colloids Surfs B-Biointerfaces, 2014, 122: 396–403CrossRefGoogle Scholar
  83. 83.
    Zhao X, Zhao H, Yuan H, Lan M. Biomed nanotechnol, 2014, 10: 262–270CrossRefGoogle Scholar
  84. 84.
    Graf C, Dembski S, Hofmann A, Rühl E. Langmuir, 2006, 22: 5604–5610CrossRefPubMedGoogle Scholar
  85. 85.
    Raghuwanshi VS, Garusinghe UM, Ilavsky J, Batchelor WJ, Garnier G. Colloid Interface Sci, 2018, 510: 190–198CrossRefGoogle Scholar
  86. 86.
    Tiraferri A, Maroni P, Borkovec M. Phys Chem Chem Phys, 2015, 17: 10348–10352CrossRefPubMedGoogle Scholar
  87. 87.
    Spruijt E, Biesheuvel PM, Vos WM. Phys Rev E, 2015, 91: 012601CrossRefGoogle Scholar
  88. 88.
    Danilovtseva EN, Aseyev V, Belozerova OY, Zelinskiy SN, Annenkov VV. Colloid Interface Sci, 2015, 446: 1–10CrossRefGoogle Scholar
  89. 89.
    Li Z, Zhang H, Han J, Chen Y, Lin H, Yang T. Adv Mater, 2018, 30: 1706981CrossRefGoogle Scholar
  90. 90.
    Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T. Angew Chem Int Ed, 2008, 47: 8438–8441CrossRefGoogle Scholar
  91. 91.
    Zhang Y, Shen Y, Teng X, Yan M, Bi H, Morais PC. AC. Appl Mater Interfaces, 2015, 7: 10201–10212CrossRefGoogle Scholar
  92. 92.
    You Q, Sun Q, Wang J, Tan X, Pang X, Liu L, Yu M, Tan F, Li N. Nanoscale, 2017, 9: 3784–3796CrossRefPubMedGoogle Scholar
  93. 93.
    Wang ZM, Wang W, Coombs N, Soheilnia N, Ozin GA. AC. Nano, 2010, 4: 7437–7450CrossRefGoogle Scholar
  94. 94.
    Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF. Science, 1993, 261: 1299–1303CrossRefPubMedGoogle Scholar
  95. 95.
    Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinski JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF. Science, 1995, 267: 1138–1143CrossRefPubMedGoogle Scholar
  96. 96.
    Lee J, Kim J, Kim WJ. Chem Mater, 2016, 28: 6417–6424CrossRefGoogle Scholar
  97. 97.
    Haase M, Schäfer H. Angew Chem Int Ed, 2011, 50: 5808–5829CrossRefGoogle Scholar
  98. 98.
    Zhou J, Liu Z, Li F. Chem Soc Rev, 2012, 41: 1323–1349CrossRefPubMedGoogle Scholar
  99. 99.
    Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q, Zhou L, Peng W, Hua Y, Shi J. Biomaterials, 2012, 33: 1079–1089CrossRefPubMedGoogle Scholar
  100. 100.
    Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, Liu Z. Biomaterials, 2012, 33: 2215–2222CrossRefPubMedGoogle Scholar
  101. 101.
    Chen C, Kang N, Xu T, Wang D, Ren L, Guo X. Nanoscale, 2015, 7: 5249–5261CrossRefPubMedGoogle Scholar
  102. 102.
    Yang G, Zhang R, Liang C, Zhao H, Yi X, Shen S, Yang K, Cheng L, Liu Z. Small, 2018, 14: 1702664CrossRefGoogle Scholar
  103. 103.
    Gao Z, Liu X, Deng G, Zhou F, Zhang L, Wang Q, Lu J. Dalton Trans, 2016, 45: 13456–13465CrossRefPubMedGoogle Scholar
  104. 104.
    Chen O, Riedemann L, Etoc F, Herrmann H, Coppey M, Barch M, Farrar CT, Zhao J, Bruns OT, Wei H, Guo P, Cui J, Jensen R, Chen Y, Harris DK, Cordero JM, Wang Z, Jasanoff A, Fukumura D, Reimer R, Dahan M, Jain RK, Bawendi MG. Nat Commun, 2014, 5: 5093CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Wang J, Liu W, Tu Q, Wang J, Song N, Zhang Y, Nie N, Wang J. Biomacromolecules, 2011, 12: 228–234CrossRefPubMedGoogle Scholar
  106. 106.
    Huang R, Ke W, Han L, Li J, Liu S, Jiang C. Biomaterials, 2011, 32: 2399–2406CrossRefPubMedGoogle Scholar
  107. 107.
    Ding H, Inoue S, Ljubimov AV, Patil R, Portilla-Arias J, Hu J, Konda B, Wawrowsky KA, Fujita M, Karabalin N, Sasaki T, Black KL, Holler E, Ljubimova JY. Proc Natl Acad Sci USA, 2010, 107: 18143–18148CrossRefPubMedGoogle Scholar
  108. 108.
    Debinski W, Gibo DM, Obiri NI, Kealiher A, Puri RK. Nat Biotechnol, 1998, 16: 449–453CrossRefPubMedGoogle Scholar
  109. 109.
    Wang C, Chen B, Zou M, Cheng G. Colloids Surfs B-Biointerfaces, 2014, 122: 332–340CrossRefGoogle Scholar
  110. 110.
    Liu X, Wang Q, Li C, Zou R, Li B, Song G, Xu K, Zheng Y, Hu J. Nanoscale, 2014, 6: 4361–4370CrossRefPubMedGoogle Scholar
  111. 111.
    Wang L, Lin X, Wang J, Hu Z, Ji Y, Hou S, Zhao Y, Wu X, Chen C. Adv Funct Mater, 2014, 24: 4229–4239CrossRefGoogle Scholar
  112. 112.
    Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C. Adv Mater, 2012, 24: 1418–1423CrossRefPubMedGoogle Scholar
  113. 113.
    Wang L, Liu Y, Li W, Jiang X, Ji Y, Wu X, Xu L, Qiu Y, Zhao K, Wei T, Li Y, Zhao Y, Chen C. Nano Lett, 2011, 11: 772–780CrossRefPubMedGoogle Scholar
  114. 114.
    Zhang Y, Aslan K, Previte MJR, Geddes CD. Fluoresc, 2007, 17: 345–349CrossRefGoogle Scholar
  115. 115.
    Zhang Y, Aslan K, Previte MJR, Geddes CD. Proc Natl Acad Sci USA, 2008, 105: 1798–1802CrossRefPubMedGoogle Scholar
  116. 116.
    Karolin J, Geddes CD. Phys Chem Chem Phys, 2013, 15: 15740–15745CrossRefPubMedGoogle Scholar
  117. 117.
    Kochuveedu ST, Kim DH. Nanoscale, 2014, 6: 4966–4984CrossRefPubMedGoogle Scholar
  118. 118.
    Li Y, Wen T, Zhao R, Liu X, Ji T, Wang H, Shi X, Shi J, Wei J, Zhao Y, Wu X, Nie G. AC. Nano, 2014, 8: 11529–11542CrossRefGoogle Scholar
  119. 119.
    Desmettre T, Devoisselle JM, Mordon S. Survey Ophthalmol, 2000, 45: 15–27CrossRefGoogle Scholar
  120. 120.
    Holzer W, Mauerer M, Penzkofer A, Szeimies RM, Abels C, Landthaler M, Bäumler W. Photochem Photobiol B-Biol, 1998, 47: 155–164CrossRefGoogle Scholar
  121. 121.
    Huang CC, Chang PY, Liu CL, Xu JP, Wu SP, Kuo WC. Nanoscale, 2015, 7: 12689–12697CrossRefPubMedGoogle Scholar
  122. 122.
    Liu Z, Liu J, Wang R, Du Y, Ren J, Qu X. Biomaterials, 2015, 56: 206–218CrossRefPubMedGoogle Scholar
  123. 123.
    Lammers T, Koczera P, Fokong S, Gremse F, Ehling J, Vogt M, Pich A, Storm G, van Zandvoort M, Kiessling F. Adv Funct Mater, 2015, 25: 36–43CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Yang K, Feng L, Shi X, Liu Z. Chem Soc Rev, 2013, 42: 530–547CrossRefPubMedGoogle Scholar
  125. 125.
    Wang Z, Shao D, Chang Z, Lu M, Wang Y, Yue J, Yang D, Li M, Xu Q, Dong W. AC. Nano, 2017, 11: 12732–12741CrossRefGoogle Scholar
  126. 126.
    Wen S, Li K, Cai H, Chen Q, Shen M, Huang Y, Peng C, Hou W, Zhu M, Zhang G, Shi X. Biomaterials, 2013, 34: 1570–1580CrossRefPubMedGoogle Scholar
  127. 127.
    Zhang J, Li C, Zhang X, Huo S, Jin S, An FF, Wang X, Xue X, Okeke CI, Duan G, Guo F, Zhang X, Hao J, Wang PC, Zhang J, Liang XJ. Biomaterials, 2015, 42: 103–111CrossRefPubMedGoogle Scholar
  128. 128.
    Dou Y, Guo Y, Li X, Li X, Wang S, Wang L, Lv G, Zhang X, Wang H, Gong X, Chang J. AC. Nano, 2016, 10: 2536–2548CrossRefGoogle Scholar
  129. 129.
    Li WP, Liao PY, Su CH, Yeh CS. Am Chem Soc, 2014, 136: 10062–10075CrossRefGoogle Scholar
  130. 130.
    Li J, Lyv Z, Li Y, Liu H, Wang J, Zhan W, Chen H, Chen H, Li X. Biomaterials, 2015, 51: 12–21CrossRefPubMedGoogle Scholar
  131. 131.
    Tang J, Jiang X, Wang L, Zhang H, Hu Z, Liu Y, Wu X, Chen C. Nanoscale, 2014, 6: 3670–3678CrossRefPubMedGoogle Scholar
  132. 132.
    Miller MA, Zheng YR, Gadde S, Pfirschke C, Zope H, Engblom C, Kohler RH, Iwamoto Y, Yang KS, Askevold B, Kolishetti N, Pittet M, Lippard SJ, Farokhzad OC, Weissleder R. Nat Commun, 2015, 6: 8692CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Ruan L, Ramezani-Dakhel H, Lee C, Li Y, Duan X, Heinz H, Huang Y. AC. Nano, 2014, 8: 6934–6944CrossRefGoogle Scholar
  134. 134.
    Chiu CY, Wu H, Yao Z, Zhou F, Zhang H, Ozolins V, Huang Y. Am Chem Soc, 2013, 135: 15489–15500CrossRefGoogle Scholar
  135. 135.
    Xu X, Zhang X, Sun H, Yang Y, Dai X, Gao J, Li X, Zhang P, Wang HH, Yu NF, Sun SG. Angew Chem, 2014, 126: 12730–12735CrossRefGoogle Scholar
  136. 136.
    Zhao L, Ge X, Yan G, Wang X, Hu P, Shi L, Wolfbeis OS, Zhang H, Sun L. Nanoscale, 2017, 9: 16012–16023CrossRefPubMedGoogle Scholar
  137. 137.
    Fan W, Bu W, Zhang Z, Shen B, Zhang H, He Q, Ni D, Cui Z, Zhao K, Bu J, Du J, Liu J, Shi J. Angew Chem Int Ed, 2015, 54: 14026–14030CrossRefGoogle Scholar
  138. 138.
    Liu Y, Liu Y, Bu W, Xiao Q, Sun Y, Zhao K, Fan W, Liu J, Shi J. Biomaterials, 2015, 49: 1–8CrossRefPubMedGoogle Scholar
  139. 139.
    Brown JM. Cancer Biol Ther, 2002, 1: 453–458CrossRefPubMedGoogle Scholar
  140. 140.
    Thews O, Wolloscheck T, Dillenburg W, Kraus S, Kelleher DK, Konerding MA, Vaupel P. Br J Cancer, 2004, 91: 1181–1189CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. Nat Med, 2012, 18: 1580–1585CrossRefPubMedGoogle Scholar
  142. 142.
    Wang C, Tao H, Cheng L, Liu Z. Biomaterials, 2011, 32: 6145–6154CrossRefPubMedGoogle Scholar
  143. 143.
    Liu J, Bu W, Pan L, Shi J. Angew Chem Int Ed, 2013, 52: 4375–4379CrossRefGoogle Scholar
  144. 144.
    Cho S, Park W, Kim DH. AC. Appl Mater Interfaces, 2017, 9: 101–111CrossRefGoogle Scholar
  145. 145.
    Mekaru H, Lu J, Tamanoi F. Adv Drug Deliver Rev, 2015, 95: 40–49CrossRefGoogle Scholar
  146. 146.
    He Q, Zhang Z, Gao F, Li Y, Shi J. Small, 2011, 7: 271–280CrossRefPubMedGoogle Scholar
  147. 147.
    Chen Y, Meng Q, Wu M, Wang S, Xu P, Chen H, Li Y, Zhang L, Wang L, Shi J. Am Chem Soc, 2014, 136: 16326–16334CrossRefGoogle Scholar
  148. 148.
    Li Z, Han J, Yu L, Qian X, Xing H, Lin H, Wu M, Yang T, Chen Y. Adv Funct Mater, 2018, 28: 1800145CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
  2. 2.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations