Advertisement

Science China Chemistry

, Volume 61, Issue 9, pp 1062–1087 | Cite as

Ion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) and related applications

  • Jiahui Zhou
  • Peipei Zuo
  • Yahua Liu
  • Zhengjin Yang
  • Tongwen Xu
Reviews
  • 100 Downloads

Abstract

Ion exchange membranes (IEMs) play a significant role in fields of energy and environment, for instance fuel cells, diffusion dialysis, electrodialysis, etc. The limited choice of commercially available IEMs has produced a strong demand of fabricating IEMs with improved properties via facile synthetic strategies over the past two decades. Poly(phenylene oxide) (PPO) is considered as a promising polymeric material for constructing practical IEMs, due to its advantages of good physicochemical properties, low manufacturing cost and easy post functionalization. In this review, we present the accumulated efforts in synthetic strategies towards diverse types of PPO-based IEMs. Relation between polymer structures and the resulted features is discussed in detail. Besides, applying IEMs from PPO and its derivatives in fuel cell, diffusion dialysis and electrodialysis is summarized and commented.

Keywords

poly(2,6–dimethyl–1,4–phenylene oxide) PPO ion exchange membrane modification application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21506201, 21720102003, 91534203), the Key Technologies R&D Program of Anhui Province (17030901079), K. C. Wong Education Foundation (2016–11) and International Partnership Program of Chinese Academy of Sciences (21134ky5b20170010).

References

  1. 1.
    Li N, Guiver MD. Macromolecules, 2014, 47: 2175–2198CrossRefGoogle Scholar
  2. 2.
    Li X, Zhang H, Mai Z, Zhang H, Vankelecom I. Energy Environ Sci, 2011, 4: 1147CrossRefGoogle Scholar
  3. 3.
    Afsar NU, Erigene B, Irfan M, Wu B, Xu T, Ji W, Emmanuel K, Ge L, Xu T. Sep Purif Tech, 2018, 193: 11–20CrossRefGoogle Scholar
  4. 4.
    Xu T, Huang C. AIChE J, 2008, 54: 3147–3159CrossRefGoogle Scholar
  5. 5.
    Mauritz KA, Moore RB. Chem Rev, 2004, 104: 4535–4586CrossRefPubMedGoogle Scholar
  6. 6.
    Xu T, Wu D, Wu L. Prog Polym Sci, 2008, 33: 894–915CrossRefGoogle Scholar
  7. 7.
    He G, Li Z, Zhao J, Wang S, Wu H, Guiver MD, Jiang Z. Adv Mater, 2015, 27: 5280–5295CrossRefPubMedGoogle Scholar
  8. 8.
    Couture G, Alaaeddine A, Boschet F, Ameduri B. Prog Polym Sci, 2011, 36: 1521–1557CrossRefGoogle Scholar
  9. 9.
    Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE. Chem Rev, 2004, 104: 4587–4612CrossRefPubMedGoogle Scholar
  10. 10.
    Hibbs MR, Fujimoto CH, Cornelius CJ. Macromolecules, 2009, 42: 8316–8321CrossRefGoogle Scholar
  11. 11.
    Alam TM, Hibbs MR. Macromolecules, 2014, 47: 1073–1084CrossRefGoogle Scholar
  12. 12.
    Li N, Shin DW, Hwang DS, Lee YM, Guiver MD. Macromolecules, 2010, 43: 9810–9820CrossRefGoogle Scholar
  13. 13.
    Mohanty AD, Lee YB, Zhu L, Hickner MA, Bae C. Macromolecules, 2014, 47: 1973–1980CrossRefGoogle Scholar
  14. 14.
    Lee S, Ann J, Lee H, Kim JH, Kim CS, Yang TH, Bae B. J Mater Chem A, 2015, 3: 1833–1836CrossRefGoogle Scholar
  15. 15.
    Dong T, Hu J, Ueda M, Wu Y, Zhang X, Wang L. J Mater Chem A, 2016, 4: 2321–2331CrossRefGoogle Scholar
  16. 16.
    Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S. Macromolecules, 2004, 37: 7960–7967CrossRefGoogle Scholar
  17. 17.
    Gu F, Dong H, Li Y, Si Z, Yan F. Macromolecules, 2013, 47: 208–216CrossRefGoogle Scholar
  18. 18.
    Deavin OI, Murphy S, Ong AL, Poynton SD, Zeng R, Herman H, Varcoe JR. Energy Environ Sci, 2012, 5: 8584CrossRefGoogle Scholar
  19. 19.
    Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M. J Am Chem Soc, 2006, 128: 1762–1769CrossRefPubMedGoogle Scholar
  20. 20.
    Kins CF, Sengupta E, Kaltbeitzel A, Wagner M, Lieberwirth I, Spiess HW, Hansen MR. Macromolecules, 2014, 47: 2645–2658CrossRefGoogle Scholar
  21. 21.
    Yang Z, Zhou J, Wang S, Hou J, Wu L, Xu T. J Mater Chem A, 2015, 3: 15015–15019CrossRefGoogle Scholar
  22. 22.
    Li N, Leng Y, Hickner MA, Wang CY. J Am Chem Soc, 2013, 135: 10124–10133CrossRefPubMedGoogle Scholar
  23. 23.
    Li Y, Xu T, Gong M. J Membr Sci, 2006, 279: 200–208CrossRefGoogle Scholar
  24. 24.
    Dang HS, Weiber EA, Jannasch P. J Mater Chem A, 2015, 3: 5280–5284CrossRefGoogle Scholar
  25. 25.
    Choe YK, Fujimoto C, Lee KS, Dalton LT, Ayers K, Henson NJ, Kim YS. Chem Mater, 2014, 26: 5675–5682CrossRefGoogle Scholar
  26. 26.
    Ran J, Wu L, Ru Y, Hu M, Din L, Xu T. Polym Chem, 2015, 6: 5809–5826CrossRefGoogle Scholar
  27. 27.
    Tongwen X, Weihua Y. J Membr Sci, 2001, 190: 159–166CrossRefGoogle Scholar
  28. 28.
    Zhang S, Xu T, Wu C. J Membr Sci, 2006, 269: 142–151CrossRefGoogle Scholar
  29. 29.
    Yan J, Hickner MA. Macromolecules, 2010, 43: 2349–2356CrossRefGoogle Scholar
  30. 30.
    Mondal AN, He Y, Wu L, Khan MI, Emmanuel K, Hossain MM, Ge L, Xu T. J Mater Chem A, 2017, 5: 1022–1027CrossRefGoogle Scholar
  31. 31.
    Zhu L, Pan J, Wang Y, Han J, Zhuang L, Hickner MA. Macromolecules, 2016, 49: 815–824CrossRefGoogle Scholar
  32. 32.
    He Y, Pan J, Wu L, Zhu Y, Ge X, Ran J, Yang ZJ, Xu T. Sci Rep, 2015, 5: 13417CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ran J, Wu L, Xu T. Polym Chem, 2013, 4: 4612–4620CrossRefGoogle Scholar
  34. 34.
    Ge Q, Ran J, Miao J, Yang Z, Xu T. ACS Appl Mater Interfaces, 2015, 7: 28545–28553CrossRefPubMedGoogle Scholar
  35. 35.
    Hou J, Wang X, Liu Y, Ge Q, Yang Z, Wu L, Xu T. J Membr Sci, 2016, 518: 282–288CrossRefGoogle Scholar
  36. 36.
    Pan J, Li Y, Zhuang L, Lu J. Chem Commun, 2010, 46: 8597–8599CrossRefGoogle Scholar
  37. 37.
    Gu S, Cai R, Yan Y. Chem Commun, 2011, 47: 2856–2858CrossRefGoogle Scholar
  38. 38.
    Han J, Peng H, Pan J, Wei L, Li G, Chen C, Xiao L, Lu J, Zhuang L. ACS Appl Mater Interfaces, 2013, 5: 13405–13411CrossRefPubMedGoogle Scholar
  39. 39.
    Tsai TH, Ertem SP, Maes AM, Seifert S, Herring AM, Coughlin EB. Macromolecules, 2015, 48: 655–662CrossRefGoogle Scholar
  40. 40.
    Zhu L, Zimudzi TJ, Li N, Pan J, Lin B, Hickner MA. Polym Chem, 2016, 7: 2464–2475CrossRefGoogle Scholar
  41. 41.
    Ertem SP, Tsai TH, Donahue MM, Zhang W, Sarode H, Liu Y, Seifert S, Herring AM, Coughlin EB. Macromolecules, 2015, 49: 153–161CrossRefGoogle Scholar
  42. 42.
    Yang Z, Hou J, Wang X, Wu L, Xu T. Macromol Rapid Commun, 2015, 36: 1362–1367CrossRefPubMedGoogle Scholar
  43. 43.
    Hou J, Liu Y, Ge Q, Yang Z, Wu L, Xu T. J Power Sources, 2018, 375: 404–411CrossRefGoogle Scholar
  44. 44.
    Thomas OD,Soo KJWY, Peckham TJ, Kulkarni MP, Holdcroft S. J Am Chem Soc, 2012, 134: 10753–10756CrossRefPubMedGoogle Scholar
  45. 45.
    Lin B, Qiu L, Qiu B, Peng Y, Yan F. Macromolecules, 2011, 44: 9642–9649CrossRefGoogle Scholar
  46. 46.
    Wang J, Li S, Zhang S. Macromolecules, 2010, 43: 3890–3896CrossRefGoogle Scholar
  47. 47.
    Zhang Q, Li S, Zhang S. Chem Commun, 2010, 46: 7495–7497CrossRefGoogle Scholar
  48. 48.
    Liu L, Li Q, Dai J, Wang H, Jin B, Bai R. J Membr Sci, 2014, 453: 52–60CrossRefGoogle Scholar
  49. 49.
    Gu S, Cai R, Luo T, Chen Z, Sun M, Liu Y, He G, Yan Y. Angew Chem Int Ed, 2009, 48: 6499–6502CrossRefGoogle Scholar
  50. 50.
    Noonan KJT, Hugar KM, KostalikIv HA, Lobkovsky EB, Abruña HD, Coates GW. J Am Chem Soc, 2012, 134: 18161–18164CrossRefPubMedGoogle Scholar
  51. 51.
    Miyake J, Fukasawa K, Watanabe M, Miyatake K. J Polym Sci Part A-Polym Chem, 2014, 52: 383–389CrossRefGoogle Scholar
  52. 52.
    Zhu Y, He Y, Ge X, Liang X, Shehzad MA, Hu M, Liu Y, Wu L, Xu T. J Mater Chem A, 2018, 6: 527–534CrossRefGoogle Scholar
  53. 53.
    Lin X, Wu L, Liu Y, Ong AL, Poynton SD, Varcoe JR, Xu T. J Power Sources, 2012, 217: 373–380CrossRefGoogle Scholar
  54. 54.
    Mondal AN, He Y, Ge L, Wu L, Emmanuel K, Hossain MM, Xu T. RSC Adv, 2017, 7: 29794–29805CrossRefGoogle Scholar
  55. 55.
    Yang Z, Liu Y, Guo R, Hou J, Wu L, Xu T. Chem Commun, 2016, 52: 2788–2791CrossRefGoogle Scholar
  56. 56.
    Wu L, Xu T, Yang W. J Membr Sci, 2006, 286: 185–192CrossRefGoogle Scholar
  57. 57.
    Li Q, Liu L, Miao Q, Jin B, Bai R. Chem Commun, 2014, 50: 2791CrossRefGoogle Scholar
  58. 58.
    Percec S. J Appl Polym Sci, 1987, 33: 191–203CrossRefGoogle Scholar
  59. 59.
    Bruson HA, MacMullen CW. J Am Chem Soc, 1941, 63: 270–272CrossRefGoogle Scholar
  60. 60.
    Dang HS, Jannasch P. J Mater Chem A, 2017, 5: 21965–21978CrossRefGoogle Scholar
  61. 61.
    Dang HS, Jannasch P. J Mater Chem A, 2016, 4: 11924–11938CrossRefGoogle Scholar
  62. 62.
    Dang HS, Jannasch P. J Mater Chem A, 2016, 4: 17138–17153CrossRefGoogle Scholar
  63. 63.
    Dang HS, Jannasch P. Macromolecules, 2015, 48: 5742–5751CrossRefGoogle Scholar
  64. 64.
    Zhu L, Pan J, Christensen CM, Lin B, Hickner MA. Macromolecules, 2016, 49: 3300–3309CrossRefGoogle Scholar
  65. 65.
    Jo J, Chi C, Höger S, Wegner G, Yoon DY. Chem Eur J, 2004, 10: 2681–2688CrossRefPubMedGoogle Scholar
  66. 66.
    Elabd YA, Hickner MA. Macromolecules, 2011, 44: 1–11CrossRefGoogle Scholar
  67. 67.
    Li Q, Liu L, Miao Q, Jin B, Bai R. Polym Chem, 2014, 5: 2208–2213CrossRefGoogle Scholar
  68. 68.
    Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L. Energy Environ Sci, 2014, 7: 3135–3191CrossRefGoogle Scholar
  69. 69.
    Lin CX, Wang XQ, Li L, Liu FH, Zhang QG, Zhu AM, Liu QL. J Power Sources, 2017, 365: 282–292CrossRefGoogle Scholar
  70. 70.
    Yang Y, Knauss DM. Macromolecules, 2015, 48: 4471–4480CrossRefGoogle Scholar
  71. 71.
    Xu T, Wu D, Seo SJ, Woo JJ, Wu L, Moon SH. J Appl Polym Sci, 2012, 124: 3511–3519CrossRefGoogle Scholar
  72. 72.
    Li Y, Jackson AC, Beyer FL, Knauss DM. Macromolecules, 2014, 47: 6757–6767CrossRefGoogle Scholar
  73. 73.
    Wu L, Xu T, Wu D, Zheng X. J Membr Sci, 2008, 310: 577–585CrossRefGoogle Scholar
  74. 74.
    Si K, Dong D, Wycisk R, Litt M. J Mater Chem, 2012, 22: 20907CrossRefGoogle Scholar
  75. 75.
    Zou G, Wu W, Cong C, Meng X, Zhao K, Zhou Q. RSC Adv, 2016, 6: 106237–106247CrossRefGoogle Scholar
  76. 76.
    Jung B, Kim B, Yang JM. J Membr Sci, 2004, 245: 61–69CrossRefGoogle Scholar
  77. 77.
    Pandey RP, Thakur AK, Shahi VK. J Membr Sci, 2014, 469: 478–487CrossRefGoogle Scholar
  78. 78.
    Yang CC, Li YJ, Chiu SJ, Lee KT, Chien WC, Huang CA. J Power Sources, 2008, 184: 95–98CrossRefGoogle Scholar
  79. 79.
    Shi B, Li Y, Zhang H, Wu W, Ding R, Dang J, Wang J. J Membr Sci, 2016, 498: 242–253CrossRefGoogle Scholar
  80. 80.
    Matsumoto K, Fujigaya T, Yanagi H, Nakashima N. Adv Funct Mater, 2011, 21: 1089–1094CrossRefGoogle Scholar
  81. 81.
    Ye YS, Cheng MY, Xie XL, Rick J, Huang YJ, Chang FC, Hwang BJ. J Power Sources, 2013, 239: 424–432CrossRefGoogle Scholar
  82. 82.
    Merle G, Wessling M, Nijmeijer K. J Membr Sci, 2011, 377: 1–35CrossRefGoogle Scholar
  83. 83.
    Yan X, Zheng W, Ruan X, Pan Y, Wu X, He G. Chin J Chem Eng, 2016, 24: 558–571CrossRefGoogle Scholar
  84. 84.
    Zhang S, Wu C, Xu T, Gong M, Xu X. J Solid State Chem, 2005, 178: 2292–2300CrossRefGoogle Scholar
  85. 85.
    Kickelbick G. Prog Polymer Sci, 2003, 28: 83–114CrossRefGoogle Scholar
  86. 86.
    Li Y, He G, Wang S, Yu S, Pan F, Wu H, Jiang Z. J Mater Chem A, 2013, 1: 10058–10077CrossRefGoogle Scholar
  87. 87.
    Wu Y, Wu C, Varcoe JR, Poynton SD, Xu T, Fu Y. J Power Sources, 2010, 195: 3069–3076CrossRefGoogle Scholar
  88. 88.
    Luo J, Wu C, Wu Y, Xu T. J Membr Sci, 2010, 347: 240–249CrossRefGoogle Scholar
  89. 89.
    Li H, Wu J, Zhao C, Zhang G, Zhang Y, Shao K, Xu D, Lin H, Han M, Na H. Int J Hydrogen Energy, 2009, 34: 8622–8629CrossRefGoogle Scholar
  90. 90.
    Sun F, Wu C, Wu Y, Xu T. J Membr Sci, 2014, 450: 103–110CrossRefGoogle Scholar
  91. 91.
    Wu B, Ge L, Yu D, Hou L, Li Q, Yang Z, Xu T. J Mater Chem A, 2016, 4: 14545–14549CrossRefGoogle Scholar
  92. 92.
    Li Q, Liu L, Liang S, Dong Q, Jin B, Bai R. RSC Adv, 2013, 3: 13477–13485CrossRefGoogle Scholar
  93. 93.
    Ran J, Hu M, Yu D, He Y, Shehzad MA, Wu L, Xu T. J Membr Sci, 2016, 520: 630–638CrossRefGoogle Scholar
  94. 94.
    Xu Tw, Yang Wh, He Bl. Chin J Polym Sci, 2002, 20: 53–57Google Scholar
  95. 95.
    Huang RYM, Kim JJ. J Appl Polym Sci, 1984, 29: 4017–4027CrossRefGoogle Scholar
  96. 96.
    Wang C, Huang Y, Cong G. Polym J, 1995, 27: 173–178CrossRefGoogle Scholar
  97. 97.
    Kim B, Jung B. Macromol Rapid Commun, 2004, 25: 1263–1267CrossRefGoogle Scholar
  98. 98.
    Wu D, Wu L, Woo JJ, Yun SH, Seo SJ, Xu T, Moon SH. J Membr Sci, 2010, 348: 167–173CrossRefGoogle Scholar
  99. 99.
    Li C, Liu J, Guan R, Zhang P, Zhang Q. J Membr Sci, 2007, 287: 180–186CrossRefGoogle Scholar
  100. 100.
    Khodabakhshi AR, Madaeni SS, Xu TW, Wu L, Wu C, Li C, Na W, Zolanvari SA, Babayi A, Ghasemi J, Hosseini SM, Khaledi A. Sep Purif Tech, 2012, 90: 10–21CrossRefGoogle Scholar
  101. 101.
    Yun SH, Woo JJ, Seo SJ, Wu L, Wu D, Xu T, Moon SH. J Membr Sci, 2011, 367: 296–305CrossRefGoogle Scholar
  102. 102.
    Wu D, Fu R, Xu T, Wu L, Yang W. J Membr Sci, 2008, 310: 522–530CrossRefGoogle Scholar
  103. 103.
    Pan J, Ge L, Lin X, Wu L, Wu B, Xu T. J Membr Sci, 2014, 470: 479–485CrossRefGoogle Scholar
  104. 104.
    Takimoto N, Wu L, Ohira A, Takeoka Y, Rikukawa M. Polymer, 2009, 50: 534–540CrossRefGoogle Scholar
  105. 105.
    Zhang Z, Wu L, Xu T. J Membr Sci, 2011, 373: 160–166CrossRefGoogle Scholar
  106. 106.
    Yan X, Sun J, Gao L, Zheng W, Dai Y, Ruan X, He G. Int J Hydrogen Energy, 2018, 43: 301–310CrossRefGoogle Scholar
  107. 107.
    Kosmala B, Schauer J. J Appl Polym Sci, 2002, 85: 1118–1127CrossRefGoogle Scholar
  108. 108.
    Schauer J, Albrecht W, Weigel T, Küdela V, Pientka Z. J Appl Polym Sci, 2001, 81: 134–142CrossRefGoogle Scholar
  109. 109.
    Wu L, Zhou D, Wang H, Pan Q, Ran J, Xu T. Fuel Cells, 2015, 15: 189–195CrossRefGoogle Scholar
  110. 110.
    Jiang R, Kunz HR, Fenton JM. J Electrochem Soc, 2006, 153: A1554CrossRefGoogle Scholar
  111. 111.
    Cho CG, Jang HY, You YG, Li GH, An SG. High Perform Polym, 2016, 18: 579–591CrossRefGoogle Scholar
  112. 112.
    Debe MK. Nature, 2012, 486: 43–51CrossRefPubMedGoogle Scholar
  113. 113.
    Rikukawa M, Sanui K. Prog Polym Sci, 2000, 25: 1463–1502CrossRefGoogle Scholar
  114. 114.
    Pan J, Chen C, Zhuang L, Lu J. Acc Chem Res, 2012, 45: 473–481CrossRefPubMedGoogle Scholar
  115. 115.
    Lu S, Pan J, Huang A, Zhuang L, Lu J. Proc Natl Acad Sci USA, 2008, 105: 20611–20614CrossRefGoogle Scholar
  116. 116.
    Arges CG, Ramani V. Proc Natl Acad Sci USA, 2013, 110: 2490–2495CrossRefPubMedGoogle Scholar
  117. 117.
    Pan J, Chen C, Li Y, Wang L, Tan L, Li G, Tang X, Xiao L, Lu J, Zhuang L. Energy Environ Sci, 2014, 7: 354–360CrossRefGoogle Scholar
  118. 118.
    Chen N, Long C, Li Y, Wang D, Zhu H. J Membr Sci, 2018, 552: 51–60CrossRefGoogle Scholar
  119. 119.
    Chen N, Long C, Li Y, Lu C, Zhu H. ACS Appl Mater Interfaces, 2018, 10: 15720–15732CrossRefPubMedGoogle Scholar
  120. 120.
    Yang Z, Guo R, Malpass-Evans R, Carta M, McKeown NB, Guiver MD, Wu L, Xu T. Angew Chem Int Ed, 2016, 55: 11499–11502CrossRefGoogle Scholar
  121. 121.
    Chempath S, Einsla BR, Pratt LR, Macomber CS, Boncella JM, Rau JA, Pivovar BS. J Phys Chem C, 2008, 112: 3179–3182CrossRefGoogle Scholar
  122. 122.
    Macomber CS, Boncella JM, Pivovar BS, Rau JA. J Therm Anal Calorim, 2008, 93: 225–229CrossRefGoogle Scholar
  123. 123.
    Ye Y, Elabd YA. Macromolecules, 2011, 44: 8494–8503CrossRefGoogle Scholar
  124. 124.
    Lin B, Dong H, Li Y, Si Z, Gu F, Yan F. Chem Mater, 2013, 25: 1858–1867CrossRefGoogle Scholar
  125. 125.
    Price SC, Williams KS, Beyer FL. ACS Macro Lett, 2014, 3: 160–165CrossRefGoogle Scholar
  126. 126.
    Hugar KM,Kostalik Iv HA, Coates GW. J Am Chem Soc, 2015, 137: 8730–8737CrossRefPubMedGoogle Scholar
  127. 127.
    Zha Y, Disabb-Miller ML, Johnson ZD, Hickner MA, Tew GN. J Am Chem Soc, 2012, 134: 4493–4496CrossRefPubMedGoogle Scholar
  128. 128.
    Gu S, Wang J, Kaspar RB, Fang Q, Zhang B, Bryan Coughlin E, Yan Y. Sci Rep, 2015, 5: 11668CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Chen N, Zhu H, Chu Y, Li R, Liu Y, Wang F. Polym Chem, 2017, 8: 1381–1392CrossRefGoogle Scholar
  130. 130.
    Mohanty AD, Bae C. J Mater Chem A, 2014, 2: 17314–17320CrossRefGoogle Scholar
  131. 131.
    Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T. J Membr Sci, 2017, 522: 267–291CrossRefGoogle Scholar
  132. 132.
    Xia L, Yu L, Hu D, Chen GZ. Mater Chem Front, 2017, 1: 584–618CrossRefGoogle Scholar
  133. 133.
    He Y, Pan J, Wu L, Ge L, Xu T. J Membr Sci, 2015, 491: 45–52CrossRefGoogle Scholar
  134. 134.
    Khan MI, Wu L, Hossain MM, Pan J, Ran J, Mondal AN, Xu T. Membr Water Treat, 2015, 6: 365–378CrossRefGoogle Scholar
  135. 135.
    Ge L, Mondal AN, Liu X, Wu B, Yu D, Li Q, Miao J, Ge Q, Xu T. J Membr Sci, 2017, 536: 11–18CrossRefGoogle Scholar
  136. 136.
    Lin X, Shamsaei E, Kong B, Liu JZ, Xu T, Wang H. J Mater Chem A, 2015, 3: 24000–24007CrossRefGoogle Scholar
  137. 137.
    Lin X, Shamsaei E, Kong B, Liu JZ, Hu Y, Xu T, Wang H. J Membr Sci, 2016, 502: 76–83CrossRefGoogle Scholar
  138. 138.
    Miao J, Yao L, Yang Z, Pan J, Qian J, Xu T. Sep Purif Tech, 2015, 141: 307–313CrossRefGoogle Scholar
  139. 139.
    Miao J, Li X, Yang Z, Jiang C, Qian J, Xu T. J Membr Sci, 2016, 498: 201–207CrossRefGoogle Scholar
  140. 140.
    Cui M, Wu Y, Ran J, Xu T. Desalination Water Treatment, 2015, 54: 2627–2637CrossRefGoogle Scholar
  141. 141.
    Mondal AN, Dai C, Pan J, Zheng C, Hossain MM, Khan MI, Wu L, Xu T. ACS Appl Mater Interfaces, 2015, 7: 15944–15954CrossRefPubMedGoogle Scholar
  142. 142.
    Wu L, Zhao Y, Ge L, Yang Z, Jiang C, Xu T. Chem Eng Sci, 2015, 135: 526–531CrossRefGoogle Scholar
  143. 143.
    Liu Y, Pan Q, Wang Y, Zheng C, Wu L, Xu T. Sep Purif Tech, 2015, 156: 226–233CrossRefGoogle Scholar
  144. 144.
    Pan Q, Hossain MM, Yang Z, Wang Y, Wu L, Xu T. J Membr Sci, 2016, 515: 115–124CrossRefGoogle Scholar
  145. 145.
    Shahi VK, Thampy SK, Rangarajan R. Reactive Funct Polym, 2000, 46: 39–47CrossRefGoogle Scholar
  146. 146.
    Ge L, Liu X, Wang G, Wu B, Wu L, Bakangura E, Xu T. J Membr Sci, 2015, 475: 273–280CrossRefGoogle Scholar
  147. 147.
    Hou L, Pan J, Yu D, Wu B, Mondal AN, Li Q, Ge L, Xu T. J Membr Sci, 2017, 528: 243–250CrossRefGoogle Scholar
  148. 148.
    Khan MI, Mondal AN, Tong B, Jiang C, Emmanuel K, Yang Z, Wu L, Xu T. Desalination, 2016, 391: 61–68CrossRefGoogle Scholar
  149. 149.
    Wilhelm FG. Bipolar Membrane Electrodialysis. Twente: Twente University Press, 2001Google Scholar
  150. 150.
    Strathmann H, Krol JJ, Rapp HJ, Eigenberger G. J Membr Sci, 1997, 125: 123–142CrossRefGoogle Scholar
  151. 151.
    Lobyntseva E, Kallio T, Kontturi K. Electrochim Acta, 2006, 51: 1165–1171CrossRefGoogle Scholar
  152. 152.
    Xu T, Fu R, Yang W, Xue Y. J Membr Sci, 2006, 279: 282–290CrossRefGoogle Scholar
  153. 153.
    Pan J, Hou L, Wang Q, He Y, Wu L, Mondal AN, Xu T. Mater Chem Phys, 2017, 186: 484–491CrossRefGoogle Scholar
  154. 154.
    Chen G, Xu T, Liu J. J Appl Polym Sci, 2008, 109: 1447–1453CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations