Probing the kinetics in supramolecular chemistry and molecular assembly by microfluidic-NMR spectroscopy

  • Hongxun Fang
  • Yibin Sun
  • Xinchang Wang
  • Manvendra Sharma
  • Zhong Chen
  • Xiaoyu Cao
  • Marcel Utz
  • Zhongqun Tian


Microfluidic-NMR spectroscopy has been extended to study the kinetics in supramolecular chemistry and molecular assembly. Kinetics of a multicomponent host-guest supramolecular system containing viologen derivatives, β-cyclodextrins and cucurbit [7]urils are studied by a PMMA based microfluidic chip combined with a dedicated transmission line probe for NMR detection. By combining microfluidic technology with NMR spectroscopy, the amount of material required for a full kinetic study could be minimized. This is crucial in supramolecular chemistry, which often involves highly sophisticated and synthetically costly building blocks. The small size of the microfluidic structure is crucial in bringing the time scale for kinetic monitoring down to seconds. At the same time, the transmission line NMR probe provides sufficient sensitivity to work at low (2 mM) concentrations.


microfluidic-NMR molecular assembly host-guest chemistry kinetics 



This work was supported by the National Basic Research Program of China (2015CB856500), the National Natural Science Foundation of China (21722304, 21573181, 91227111, 91427304) and the Fundamental Research Funds for the Central Universities of China (20720160050). Development and Construction of the NMR probe was supported in part by a Marie Curie Career Integration Grant to MU by the European Commission (Project uf-NMR). We thank Billy Hale for the help on the bonding protocol of microfluidic chip, Chen Jia-He for the help on NMR data acquirement, Chai Hong-Xin and Li Ming-Shuang for the ITC data acquirement, Lin Dong-Hai and Yao Hong-Wei for discussions.

Supplementary material

11426_2018_9293_MOESM1_ESM.docx (2.8 mb)
Supporting Information


  1. 1.
    Zhang XM, Zeng QD, Wang C. Sci China Chem, 2014, 57: 13–25CrossRefGoogle Scholar
  2. 2.
    Lehn JM. Angew Chem Int Ed, 2013, 52: 2836–2850CrossRefGoogle Scholar
  3. 3.
    Elemans JAAW, Rowan AE, Nolte RJM. J Mater Chem, 2003, 13: 2661–2670CrossRefGoogle Scholar
  4. 4.
    Ludlow RF, Otto S. Chem Soc Rev, 2008, 37: 101–108CrossRefPubMedGoogle Scholar
  5. 5.
    Korevaar PA, George SJ, Markvoort AJ, Smulders MMJ, Hilbers PAJ, Schenning APHJ, De Greef TFA, Meijer EW. Nature, 2012, 481: 492–496CrossRefPubMedGoogle Scholar
  6. 6.
    Bohne C. Chem Soc Rev, 2014, 43: 4037–4050CrossRefPubMedGoogle Scholar
  7. 7.
    Enright GD, Udachin KA, Ripmeester JA. CrystEngComm, 2010, 12: 1450–1453CrossRefGoogle Scholar
  8. 8.
    Clore GM, Gronenborn AM. Proc Natl Acad Sci USA, 1998, 95: 5891–5898CrossRefPubMedGoogle Scholar
  9. 9.
    Schneider HJ, Hacket F, Rüdiger V, Ikeda H. Chem Rev, 1998, 98: 1755–1786CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang W, Nowosinski K, Löw NL, Dzyuba EV, Klautzsch F, Schäfer A, Huuskonen J, Rissanen K, Schalley CA. J Am Chem Soc, 2012, 134: 1860–1868CrossRefPubMedGoogle Scholar
  11. 11.
    Wojciechowski JP, Martin AD, Thordarson P. J Am Chem Soc, 2018, 140: 2869–2874CrossRefPubMedGoogle Scholar
  12. 12.
    Yang J, Wu K, Konák C, Kopecek J. Biomacromolecules, 2008, 9: 510–517CrossRefPubMedGoogle Scholar
  13. 13.
    Cai W, Wang GT, Du P, Wang RX, Jiang XK, Li ZT. J Am Chem Soc, 2008, 130: 13450–13459CrossRefPubMedGoogle Scholar
  14. 14.
    Grzesiek S, Sass HJ. Curr Opin Struct Biol, 2009, 19: 585–595CrossRefPubMedGoogle Scholar
  15. 15.
    Wu N, Peck TL, Webb AG, Magin RL, Sweedler JV. J Am Chem Soc, 1994, 116: 7929–7930CrossRefGoogle Scholar
  16. 16.
    Subramanian R, Kelley WP, Floyd PD, Tan ZJ, Webb AG, Sweedler JV. Anal Chem, 1999, 71: 5335–5339CrossRefPubMedGoogle Scholar
  17. 17.
    Pusecker K, Schewitz J, Gfrörer P, Tseng LH, Albert K, Bayer E. Anal Chem, 1998, 70: 3280–3285CrossRefPubMedGoogle Scholar
  18. 18.
    Ciobanu L, Jayawickrama DA, Zhang X, Webb AG, Sweedler JV. Angew Chem Int Ed, 2003, 42: 4669–4672CrossRefGoogle Scholar
  19. 19.
    Badilita V, Meier RC, Spengler N, Wallrabe U, Utz M, Korvink JG. Soft Matter, 2012, 8: 10583–10597CrossRefGoogle Scholar
  20. 20.
    Bart J, Kolkman AJ, Oosthoek-de Vries AJ, Koch K, Nieuwland PJ, Janssen HJWG, van Bentum JPJM, Ampt KAM, Rutjes FPJT, Wijmenga SS, Gardeniers HJGE, Kentgens APM. J Am Chem Soc, 2009, 131: 5014–5015CrossRefPubMedGoogle Scholar
  21. 21.
    Wensink H, Benito-Lopez F, Hermes DC, Verboom W, Gardeniers HJGE, Reinhoudt DN, van den Berg A. Lab Chip, 2005, 5: 280–284CrossRefPubMedGoogle Scholar
  22. 22.
    Gomez MV, Rodriguez AM, de la Hoz A, Jimenez-Marquez F, Fratila RM, Barneveld PA, Velders AH. Anal Chem, 2015, 87: 10547–10555CrossRefPubMedGoogle Scholar
  23. 23.
    Christianson MD, Tan EHP, Landis CR. J Am Chem Soc, 2010, 132: 11461–11463CrossRefPubMedGoogle Scholar
  24. 24.
    Finch G, Yilmaz A, Utz M. J Magn Reson, 2016, 262: 73–80CrossRefPubMedGoogle Scholar
  25. 25.
    Yilmaz A, Utz M. Lab Chip, 2016, 16: 2079–2085CrossRefPubMedGoogle Scholar
  26. 26.
    Nieto-Ortega B, Villalva J, Vera-Hidalgo M, Ruiz-González L, Burzurí E, Pérez EM. Angew Chem Int Ed, 2017, 56: 12240–12244CrossRefGoogle Scholar
  27. 27.
    Jiang L, Peng Y, Yan Y, Huang J. Soft Matter, 2011, 7: 1726–1731CrossRefGoogle Scholar
  28. 28.
    Han Y, Gao C, He XH. Sci China Chem, 2012, 55: 604–611CrossRefGoogle Scholar
  29. 29.
    Rekharsky MV, Inoue Y. Chem Rev, 1998, 98: 1875–1918CrossRefPubMedGoogle Scholar
  30. 30.
    Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Chem Rev, 2015, 115: 12320–12406CrossRefPubMedGoogle Scholar
  31. 31.
    Takegoshi K, Tsuda S, Hikichi K. J Magn Reson (1969), 1990, 89: 399–405CrossRefGoogle Scholar
  32. 32.
    Bart J, Janssen JWG, van Bentum PJM, Kentgens APM, Gardeniers JGE. J Magn Reson, 2009, 201: 175–185CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials and Key Laboratory of Chemical Biology of Fujian ProvinceXiamen UniversityXiamenChina
  2. 2.Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic ResonanceXiamen UniversityXiamenChina
  3. 3.School of ChemistryUniversity of SouthamptonLondonUK

Personalised recommendations