Science China Chemistry

, Volume 61, Issue 8, pp 940–946 | Cite as

Comparison of luminescent properties of helicene-like bibenzothiophenes with o-carborane and 5,6-dicarba-nido-decaborane

  • Kenta Nishino
  • Kazushi Hashimoto
  • Kazuo TanakaEmail author
  • Yasuhiro Morisaki
  • Yoshiki ChujoEmail author


This article describes comparison of the anchoring effect on electronic properties of the helicene-like bibenzothiophene between o-carborane and 5,6-dicarba-nido-decaborane. The o-carborane and nido-decaborane-fused bibenzothiophenes were simultaneously obtained in the same reaction and successfully isolated. Initially, the X-ray single crystal analysis revealed that the helicene-like distorted structure was realized in the nido-decaborane-fused bibenzothiophene. From optical measurements in the solution state, distinct different characteristics depending on the type of anchors were observed. It was summarized that the absorption and luminescent properties originated from weak π-conjugation at the bibenzothiophene moiety in the o-carborane-fused compound were obtained, whereas robust π-conjugation and significant emission from the intramolecular charge transfer state were detected from the nido-decaborane-fused compound. These data can be explained by the theoretical results that π-conjugation was restrictedly developed within the bibenzothiophene moiety in frontier orbitals of the o-carborane-fused compound. In contrast, π-conjugation can be constructed even through the distorted bibenzothiophene because of the nido-decaborane unit. Moreover, the intramolecular charge transfer state should be realized because of electronic interaction involving the nido-decaborane unit in the excited state. Furthermore, it was demonstrated that the nido-decaborane-fused compound possessed solid-state emission and mechanochromic luminescent properties. The π-conjugation on the distorted structure supported by the nido-decaborane anchor should play a significant role in suppressing aggregation-caused quenching followed by presenting solid-state emission with stimuli responsiveness.


carborane helicene mechanochromism aggregation-induced emission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Konica Minolta Science and Technology Foundation (for K.T.) and a Grant-in-Aid for Scientific Research on Innovative Areas “New Polymeric Materials Based on Element-Blocks (No.2401)” (JP24102013).

Supplementary material

11426_2018_9258_MOESM1_ESM.pdf (1.1 mb)
Comparison of Luminescent Properties of Helicene-Like Bibenzothiophenes with o-Carborane and 5,6-Dicarba-nido-Decaborane


  1. 1.
    Chujo Y, Tanaka K. Bull Chem Soc Jpn, 2015, 88: 633–643CrossRefGoogle Scholar
  2. 2.
    Tanaka K, Chujo Y. NPG Asia Mater, 2015, 7: e223CrossRefGoogle Scholar
  3. 3.
    Gon M, Tanaka K, Chujo Y. Polym J, 2018, 50: 109–126CrossRefGoogle Scholar
  4. 4.
    Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Angew Chem Int Ed, 2017, 56: 254–259CrossRefGoogle Scholar
  5. 5.
    Nishino K, Yamamoto H, Tanaka K, Chujo Y. Asian J Org Chem, 2017, 6: 1818–1822CrossRefGoogle Scholar
  6. 6.
    Nishino K, Uemura K, Gon M, Tanaka K, Chujo Y. Molecules, 2017, 22: 2009–2018CrossRefGoogle Scholar
  7. 7.
    Nishino K, Uemura K, Tanaka K, Chujo Y. New J Chem, 2018, 42: 4210–4214CrossRefGoogle Scholar
  8. 8.
    Mori H, Nishino K, Wada K, Morisaki Y, Tanaka K, Chujo Y. Mater Chem Front, 2018, 2: 573–579CrossRefGoogle Scholar
  9. 9.
    Naito H, Uemura K, Morisaki Y, Tanaka K, Chujo Y. Eur J Org Chem, 2018, 2018: 1885–1890CrossRefGoogle Scholar
  10. 10.
    Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Chem Asian J, 2017, 12: 2134–2138CrossRefGoogle Scholar
  11. 11.
    Nishino K, Hashimoto K, Tanaka K, Morisaki Y, Chujo Y. Tetrahedron Lett, 2016, 57: 2025–2028CrossRefGoogle Scholar
  12. 12.
    Cho YJ, Kim SY, Cho M, Han WS, Son HJ, Cho DW, Kang SO. Phys Chem Chem Phys, 2016, 18: 9702–9708CrossRefGoogle Scholar
  13. 13.
    Kim SY, Cho YJ, Jin GF, Han WS, Son HJ, Cho DW, Kang SO. Phys Chem Chem Phys, 2015, 17: 15679–15682CrossRefGoogle Scholar
  14. 14.
    Wang Z, Jiang P, Wang T, Moxey GJ, Cifuentes MP, Zhang C, Humphrey MG. Phys Chem Chem Phys, 2016, 18: 15719–15726CrossRefGoogle Scholar
  15. 15.
    Kwon S, Wee KR, Cho YJ, Kang SO. Chem Eur J, 2014, 20: 5953–5960CrossRefGoogle Scholar
  16. 16.
    Nishino K, Yamamoto H, Tanaka K, Chujo Y. Org Lett, 2016, 18: 4064–4067CrossRefGoogle Scholar
  17. 17.
    Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. J Mater Chem C, 2017, 5: 10047–10054CrossRefGoogle Scholar
  18. 18.
    Tanaka K, Nishino K, Ito S, Yamane H, Suenaga K, Hashimoto K, Chujo Y. Faraday Discuss, 2017, 196: 31–42CrossRefGoogle Scholar
  19. 19.
    Huang PY, Chen LH, Chen YY, Chang WJ, Wang JJ, Lii KH, Yan JY, Ho JC, Lee CC, Kim C, Chen MC. Chem Eur J, 2013, 19: 3721–3728CrossRefGoogle Scholar
  20. 20.
    Štıbr B, Teixidor F, Viñas C, Fusek J. J Organomet Chem, 1998, 550: 125–130CrossRefGoogle Scholar
  21. 21.
    Stíbr B, Hermánek S, Janousek Z, Plzák Z, Dolanský J, Plesek J. Polyhedron, 1982, 1: 822–824CrossRefGoogle Scholar
  22. 22.
    Rietz RR, Schaeffer R. J Am Chem Soc, 1973, 95: 6254–6262CrossRefGoogle Scholar
  23. 23.
    Lawrence SH, Wermer JR, Boocock SK, Banks MA, Keller PC, Shore SG. Inorg Chem, 1986, 25: 367–372CrossRefGoogle Scholar
  24. 24.
    Jung CW, Hawthorne MF. J Am Chem Soc, 1980, 102: 3024–3032CrossRefGoogle Scholar
  25. 25.
    Barker GK, Garcia MP, Green M, Pain GN, Stone FGA, Jones SKR, Welch AJ. J Chem Soc Chem Commun, 1981, 652Google Scholar
  26. 26.
    Šubrtová V, Línek A, Hašek J. Acta Crystlogr B Struct Crystlogr Cryst Chem, 1982, 38: 3147–3149CrossRefGoogle Scholar
  27. 27.
    Barker GK, Godfrey NR, Green M, Parge HE, Stone FGA, Welch AJ. J Chem Soc Chem Commun, 1983, 277–279Google Scholar
  28. 28.
    Barker GK, Green M, Stone FGA, Wolsey WC, Welch AJ. J Chem Soc Dalton Trans, 1983, 2063–2069Google Scholar
  29. 29.
    Bown M, Grüner Bı, Štıbr B, Fontaine XLR, Thornton-Pett M, Kennedy JD. J Organomet Chem, 2000, 614-615: 269–282CrossRefGoogle Scholar
  30. 30.
    Pisareva IV, Dolgushin FM, Tok OL, Konoplev VE, Suponitsky KY, Yanovsky AI, Chizhevsky IT. Organometallics, 2001, 20: 4216–4220CrossRefGoogle Scholar
  31. 31.
    Štíbr B, Holub J, Bakardjiev M, Hnyk D, Tok OL, Milius W, Wrackmeyer B. Eur J Inorg Chem, 2002, 2002: 2320–2326CrossRefGoogle Scholar
  32. 32.
    Balagurova EV, Pisareva IV, Smol’yakov AF, Dolgushin FM, Godovikov IA, Chizhevsky IT. Inorg Chem, 2016, 55: 11193–11200CrossRefGoogle Scholar
  33. 33.
    Bakardjiev M, Holub J, Stíbr B, Císarová I. Dalton Trans, 2010, 39: 4186–4190CrossRefGoogle Scholar
  34. 34.
    Štíbr B. J Organomet Chem, 2015, 798: 30–35CrossRefGoogle Scholar
  35. 35.
    Bakardjiev M, Štíbr B, Holub J, Padělková Z, Růžička A. Organometallics, 2015, 34: 450–454CrossRefGoogle Scholar
  36. 36.
    Tok OL, Bakardjiev M, Štíbr B, Hnyk D, Holub J, Padělková Z, Růžička A. Inorg Chem, 2016, 55: 8839–8843CrossRefGoogle Scholar
  37. 37.
    Hani R, Geanangel RA. Polyhedron, 1982, 1: 824–826CrossRefGoogle Scholar
  38. 38.
    Powley SL, Rosair GM, Welch AJ. Dalton Trans, 2016, 45: 11742–11752CrossRefGoogle Scholar
  39. 39.
    Oyama H, Nakano K, Harada T, Kuroda R, Naito M, Nobusawa K, Nozaki K. Org Lett, 2013, 15: 2104–2107CrossRefGoogle Scholar
  40. 40.
    Matsuno T, Koyama Y, Hiroto S, Kumar J, Kawai T, Shinokubo H. Chem Commun, 2015, 51: 4607–4610CrossRefGoogle Scholar
  41. 41.
    Schleyer PR, Maerker C, Dransfeld A, Jiao H, van E.kema Hommes NJR. J Am Chem Soc, 1996, 118: 6317–6318CrossRefGoogle Scholar
  42. 42.
    Schleyer PR, Manoharan M, Wang ZX, Kiran B, Jiao H, Puchta R, van E.kema Hommes NJR. Org Lett, 2001, 3: 2465–2468CrossRefGoogle Scholar
  43. 43.
    Nishino K, Morisaki Y, Tanaka K, Chujo Y. New J Chem, 2017, 41: 10550–10554CrossRefGoogle Scholar
  44. 44.
    Yoshii R, Suenaga K, Tanaka K, Chujo Y. Chem Eur J, 2015, 21: 7231–7237CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer Chemistry, Graduate School of EngineeringKyoto UniversityKatsura KyotoJapan
  2. 2.Department of Applied Chemistry for Environment, School of Science and TechnologyKwansei Gakuin UniversitySanda HyogoJapan

Personalised recommendations