Advertisement

Science China Chemistry

, Volume 61, Issue 8, pp 1025–1033 | Cite as

Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends

  • Zijian Zhang
  • Zicheng Ding
  • David J. Jones
  • Wallace W. H. Wong
  • Bin Kan
  • Zhaozhao Bi
  • Xiangjian Wan
  • Wei Ma
  • Yongsheng Chen
  • Xiaojing Long
  • Chuandong Dou
  • Jun Liu
  • Lixiang Wang
Articles
  • 90 Downloads

Abstract

The development of molecular donor/polymer acceptor blend (MD/PA)-type organic solar cells (OSCs) lags far behind other type OSCs. It is due to the large-size phase separation morphology of MD/PA blend, which results from the high crystallinity of molecular donors. In this article, to suppress the crystallinity of molecular donors, we use ternary blends to develop OSCs based on one polymer acceptor (P-BNBP-fBT) and two molecular donors (DR3TBDTT and BTR) with similar chemical structures. The ternary OSC exhibits a power conversion efficiency (PCE) of 4.85%, which is higher than those of the binary OSCs (PCE=3.60% or 3.86%). To our best knowledge, it is the first report of ternary MD/PA-type OSCs and this PCE is among the highest for MD/PA-type OSCs reported so far. Compared with the binary blends, the ternary blend exhibits decreased crystalline size and improved face-on orientation of the donors. As a result, the ternary blend exhibits improved and balanced charge mobilities, suppressed charge recombination and increased donor/acceptor interfacial areas, which leads to the higher short-circuit current density. These results suggest that using ternary blend is an effective strategy to manipulate active layer morphology and enhance photovoltaic performance of MD/PA-type OSCs.

Keywords

organic solar cells molecular donor polymer acceptor blend morphology ternary blend 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Basic Research and Development Program of China (2014CB643504), the National Natural Science Foundation of China (21625403, 51403200, 21504066, 21534003), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12010200), Jilin Scientific and Technological Development Program (20170519003JH), Ministry of Science and Technology (2016YFA0200700), the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (DE-AC02- 05CH11231), ARC Future Fellowship (FT130100500) and the ARC Centre of Excellence in Exciton Science (CE170100026). The authors thank Chenhui Zhu at beamline 7.3.3, and Cheng Wang at beamline 11.0.1.2 for assistance with data acquisition. The collaborative work in this project between Australia and China was made possible by funding from the Australian Renewable Energy Agency, the Australian Centre for Advanced Photovoltaics and the International Research & Research Training Fund of the University of Melbourne. Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government.

Supplementary material

11426_2018_9249_MOESM1_ESM.docx (1.9 mb)
Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends

References

  1. 1.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791CrossRefGoogle Scholar
  2. 2.
    Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161CrossRefGoogle Scholar
  3. 3.
    Li ZG, Zhao XY, Lu X, Gao ZQ, Mi BX, Huang W. Sci China Chem, 2012, 55: 553–578CrossRefGoogle Scholar
  4. 4.
    Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571–582CrossRefGoogle Scholar
  5. 5.
    Kim T, Kim JH, Kang TE, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim TS, Kim BJ. Nat Commun, 2015, 6: 8547CrossRefGoogle Scholar
  6. 6.
    Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192–209CrossRefGoogle Scholar
  7. 7.
    Zhao W, Zhang S, Hou J. Sci China Chem, 2016, 59: 1574–1582CrossRefGoogle Scholar
  8. 8.
    Zhao Y, Zou W, Li H, Lu K, Yan W, Wei Z. Chin J Polym Sci, 2017, 35: 261–268CrossRefGoogle Scholar
  9. 9.
    Li YQ, Wang QK, Ou QD, Tang JX. Sci China Chem, 2016, 59: 422–435CrossRefGoogle Scholar
  10. 10.
    Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003CrossRefGoogle Scholar
  11. 11.
    Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142CrossRefGoogle Scholar
  12. 12.
    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174CrossRefGoogle Scholar
  13. 13.
    Jia J, Zheng N, Wang Z, Huang Y, Duan C, Huang F, Cao Y. Sci China Chem, 2017, 60: 1458–1467CrossRefGoogle Scholar
  14. 14.
    Zhang H, Liu Y, Sun Y, Li M, Ni W, Zhang Q, Wan X, Chen Y. Sci China Chem, 2017, 60: 366–369CrossRefGoogle Scholar
  15. 15.
    Zhang X, Yao J, Zhan C. Sci China Chem, 2016, 59: 209–217CrossRefGoogle Scholar
  16. 16.
    Jia B, Wu Y, Zhao F, Yan C, Zhu S, Cheng P, Mai J, Lau TK, Lu X, Su CJ, Wang C, Zhan X. Sci China Chem, 2017, 60: 257–263CrossRefGoogle Scholar
  17. 17.
    Bin H, Zhong L, Zhang ZG, Gao L, Yang Y, Xue L, Zhang J, Zhang Z, Li Y. Sci China Chem, 2016, 59: 1317–1322CrossRefGoogle Scholar
  18. 18.
    Jung JW, Russell TP, Jo WH. Chem Mater, 2015, 27: 4865–4870CrossRefGoogle Scholar
  19. 19.
    Fan B, Ying L, Zhu P, Pan F, Liu F, Chen J, Huang F, Cao Y. Adv Mater, 2017, 29: 1703906CrossRefGoogle Scholar
  20. 20.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151CrossRefGoogle Scholar
  21. 21.
    Qiu B, Xue L, Yang Y, Bin H, Zhang Y, Zhang C, Xiao M, Park K, Morrison W, Zhang ZG, Li Y. Chem Mater, 2017, 29: 7543–7553CrossRefGoogle Scholar
  22. 22.
    Cheng P, Zhao X, Zhou W, Hou J, Li Y, Zhan X. Org Electron, 2014, 15: 2270–2276CrossRefGoogle Scholar
  23. 23.
    Geng Y, Xiao B, Izawa S, Huang J, Tajima K, Zeng Q, Zhou E. J Mater Chem A, 2015, 3: 22325–22331CrossRefGoogle Scholar
  24. 24.
    Wang Y, Zhao X, Zhan X. J Mater Chem C, 2015, 3: 447–452CrossRefGoogle Scholar
  25. 25.
    Li Z, Lin JDA, Phan H, Sharenko A, Proctor CM, Zalar P, Chen Z, Facchetti A, Nguyen TQ. Adv Funct Mater, 2015, 24: 6989–6998CrossRefGoogle Scholar
  26. 26.
    Yuan J, Ma W. Org Electron, 2016, 39: 279–287CrossRefGoogle Scholar
  27. 27.
    Zhang Z, Ding Z, Long X, Dou C, Liu J, Wang L. J Mater Chem C, 2017, 5: 6812–6819CrossRefGoogle Scholar
  28. 28.
    Lu L, Kelly MA, You W, Yu L. Nat Photon, 2015, 9: 491–500CrossRefGoogle Scholar
  29. 29.
    An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B. Energy Environ Sci, 2016, 9: 281–322CrossRefGoogle Scholar
  30. 30.
    Zhong L, Gao L, Bin H, Hu Q, Zhang ZG, Liu F, Russell TP, Zhang Z, Li Y. Adv Energy Mater, 2017, 7: 1602215CrossRefGoogle Scholar
  31. 31.
    Zhao W, Li S, Zhang S, Liu X, Hou J. Adv Mater, 2017, 29: 1604059CrossRefGoogle Scholar
  32. 32.
    Cheng P, Zhang M, Lau TK, Wu Y, Jia B, Wang J, Yan C, Qin M, Lu X, Zhan X. Adv Mater, 2017, 29: 1605216CrossRefGoogle Scholar
  33. 33.
    Zhang J, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. J Am Chem Soc, 2015, 137: 8176–8183CrossRefGoogle Scholar
  34. 34.
    Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387–2395CrossRefGoogle Scholar
  35. 35.
    Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y. J Am Chem Soc, 2013, 135: 8484–8487CrossRefGoogle Scholar
  36. 36.
    Sun K, Xiao Z, Lu S, Zajaczkowski W, Pisula W, Hanssen E, White JM, Williamson RM, Subbiah J, Ouyang J, Holmes AB, Wong WWH, Jones DJ. Nat Commun, 2015, 6: 6013CrossRefGoogle Scholar
  37. 37.
    Long X, Ding Z, Dou C, Zhang J, Liu J, Wang L. Adv Mater, 2016, 28: 6504–6508CrossRefGoogle Scholar
  38. 38.
    Kong J, Hwang IW, Lee K. Adv Mater, 2014, 26: 6275–6283CrossRefGoogle Scholar
  39. 39.
    Hexemer A, Bras W, Glossinger J, Schaible E, Gann E, Kirian R, MacDowell A, Church M, Rude B, Padmore H. J Phys-Conf Ser, 2010, 247: 012007CrossRefGoogle Scholar
  40. 40.
    Gann E, Young AT, Collins BA, Yan H, Nasiatka J, Padmore HA, Ade H, Hexemer A, Wang C. Rev Sci Instrum, 2012, 83: 045110CrossRefGoogle Scholar
  41. 41.
    Wu Y, Wang ZY, Meng XY, Ma W. Prog Chem, 2017, 29: 93-101Google Scholar
  42. 42.
    Li M, Liu F, Wan X, Ni W, Kan B, Feng H, Zhang Q, Yang X, Wang Y, Zhang Y, Shen Y, Russell TP, Chen Y. Adv Mater, 2015, 27: 6296–6302CrossRefGoogle Scholar
  43. 43.
    Gupta V, Bharti V, Kumar M, Chand S, Heeger AJ. Adv Mater, 2015, 27: 4398–4404CrossRefGoogle Scholar
  44. 44.
    Janssen RAJ, Nelson J. Adv Mater, 2013, 25: 1847–1858CrossRefGoogle Scholar
  45. 45.
    Veldman D, Meskers SCJ, Janssen RAJ. Adv Funct Mater, 2010, 19: 1939–1948CrossRefGoogle Scholar
  46. 46.
    Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC. Science, 2016, 352: aad4424–aad4424CrossRefGoogle Scholar
  47. 47.
    Ding Z, Long X, Dou C, Liu J, Wang L. Chem Sci, 2016, 7: 6197–6202CrossRefGoogle Scholar
  48. 48.
    Zhao R, Dou C, Liu J, Wang L. Chin J Polym Sci, 2017, 35: 198–206CrossRefGoogle Scholar
  49. 49.
    Dou C, Liu J, Wang L. Sci China Chem, 2017, 60: 450–459CrossRefGoogle Scholar
  50. 50.
    Dou C, Long X, Ding Z, Xie Z, Liu J, Wang L. Angew Chem Int Ed, 2016, 55: 1436–1440CrossRefGoogle Scholar
  51. 51.
    Dou C, Ding Z, Zhang Z, Xie Z, Liu J, Wang L. Angew Chem Int Ed, 2015, 54: 3648–3652CrossRefGoogle Scholar
  52. 52.
    Kim T, Choi J, Kim HJ, Lee W, Kim BJ. Macromolecules, 2017, 50: 6861–6871CrossRefGoogle Scholar
  53. 53.
    Cho HH, Han G, Younts R, Lee W, Gautam BR, Lee S, Lee C, Kim T, Kim FS, Gundogdu K, Kim BJ. J Mater Chem A, 2017, 5: 21291–21299CrossRefGoogle Scholar
  54. 54.
    Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424–2434CrossRefGoogle Scholar
  55. 55.
    Koster LJA, Mihailetchi VD, Xie H, Blom PWM. Appl Phys Lett, 2005, 87: 203502CrossRefGoogle Scholar
  56. 56.
    Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, de Boer B, van Duren JKJ, Janssen RAJ. Adv Funct Mater, 2005, 15: 795–801CrossRefGoogle Scholar
  57. 57.
    Lee C, Giridhar T, Choi J, Kim S, Kim Y, Kim T, Lee W, Cho HH, Wang C, Ade H, Kim BJ. Chem Mater, 2017, 29: 9407–9415CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.School of Chemistry, Bio21 Institutethe University of MelbourneParkvilleAustralia
  3. 3.Key Laboratory for Functional Polymer Materials and Centre for Nanoscale Science and Technology, Institute of Polymer Chemistry, College of ChemistryNankai UniversityTianjinChina
  4. 4.Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina
  5. 5.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations