Oxidation-induced ortho-selective C–H bond functionalization of 2-naphthylamine derivative

Communications
  • 26 Downloads

Abstract

Selective C–H bond functionalization has been emerged as a versatile strategy for the construction of new chemical bonds. In the past decades, the directing group (DG)-assisted C–H bond activation was developed as one of the most efficient methods for selective C–H functionalization. Although a great progress has been made by utilizing this traditional method, developing new strategy for selective C–H bond functionalization is still highly demanded. Hence, a novel oxidation-induced C–H bond functionalization method was demonstrated in this work. By this new method, ortho-C(sp2)–H chlorination of N-substituted 2-naphthylamine was realized in a highly selective manner.

Keywords

oxidation-induced C–H bond functionalization ortho-selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21390402, 21520102003, 21702150), the National Basic Research Program of China (2012CB725302), the CAS Interdisciplinary Innovation Team and the Hubei Province Natural Science Foundation of China (2017CFA010), and China Postdoctoral Science Foundation (BX201600114, 2016M602340). XAS study was performed at National Synchrotron Radiation Research Center. The Program of Introducing Talents of Discipline to Universities of China is also appreciated.

Supplementary material

11426_2018_9218_MOESM1_ESM.pdf (630 kb)
Supplementary material, approximately 631 KB.

References

  1. 1 (a).
    Hartwig JF. Nature, 2008, 455: 314–322CrossRefGoogle Scholar
  2. (b).
    Hennessy ET, Betley TA. Science, 2013, 340: 591–595CrossRefGoogle Scholar
  3. (c).
    Kozhushkov SI, Ackermann L. Chem Sci, 2013, 4: 886–896CrossRefGoogle Scholar
  4. (d).
    Leow D, Li G, Mei TS, Yu JQ. Nature, 2012, 486: 518–522CrossRefGoogle Scholar
  5. (e).
    Liang Y, Jiao N. Sci China Chem, 2017, 60: 105–106CrossRefGoogle Scholar
  6. (f).
    Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem Rev, 2015, 115: 12138–12204CrossRefGoogle Scholar
  7. (g).
    McMurray L, O’Hara F, Gaunt MJ. Chem Soc Rev, 2011, 40: 1885–1898CrossRefGoogle Scholar
  8. (h).
    Murakami K, Yamada S, Kaneda T, Itami K. Chem Rev, 2017, 117: 9302–9332CrossRefGoogle Scholar
  9. (i).
    Sun CL, Li BJ, Shi ZJ. Chem Rev, 2011, 111: 1293–1314CrossRefGoogle Scholar
  10. (j).
    Tang S, Liu K, Liu C, Lei A. Chem Soc Rev, 2015, 44: 1070–1082CrossRefGoogle Scholar
  11. (k).
    Tao P, Jia Y. Sci China Chem, 2016, 59: 1109–1125CrossRefGoogle Scholar
  12. (l).
    Topczewski JJ, Cabrera PJ, Saper NI, Sanford MS. Nature, 2016, 531: 220–224CrossRefGoogle Scholar
  13. (m).
    Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem Soc Rev, 2011, 40: 4740–4761CrossRefGoogle Scholar
  14. (n).
    Xu ZY, Yu HZ, Fu Y. Sci China Chem, 2017, 60: 165–166CrossRefGoogle Scholar
  15. (o).
    Yan H, Zhu C. Sci China Chem, 2017, 60: 214–222CrossRefGoogle Scholar
  16. (p).
    Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem Rev, 2017, 117: 9016–9085CrossRefGoogle Scholar
  17. (q).
    Zhang Z, Tanaka K, Yu JQ. Nature, 2017, 543: 538–542CrossRefGoogle Scholar
  18. (r).
    Wan X, Ma Z, Li B, Zhang K, Cao S, Zhang S, Shi Z. J Am Chem Soc, 2006, 128: 7416–7417CrossRefGoogle Scholar
  19. (s).
    Chen X, Hao XS, Goodhue CE, Yu JQ. J Am Chem Soc, 2006, 128: 6790–6791CrossRefGoogle Scholar
  20. 2 (a).
    Chen X, Engle KM, Wang DH, Yu JQ. Angew Chem Int Ed, 2009, 48: 5094–5115CrossRefGoogle Scholar
  21. (b).
    Yu JQ. Adv Synth Catal, 2014, 356: 1393CrossRefGoogle Scholar
  22. 3 (a).
    Colby DA, Bergman RG, Ellman JA. Chem Rev, 2010, 110: 624–655CrossRefGoogle Scholar
  23. (b).
    Pirnot MT, Rankic DA, Martin DBC, MacMillan DWC. Science, 2013, 339: 1593–1596CrossRefGoogle Scholar
  24. (c).
    Wang J, Liu C, Yuan J, Lei A. Angew Chem Int Ed, 2013, 52: 2256–2259CrossRefGoogle Scholar
  25. (d).
    Qin X, Li X, Huang Q, Liu H, Wu D, Guo Q, Lan J, Wang R, You J. Angew Chem Int Ed, 2015, 54: 7167–7170CrossRefGoogle Scholar
  26. (e).
    Hu J, Li G, Yuan C, Huang ZB, Shi DQ, Zhao Y. Org Lett, 2016, 18: 5998–6001CrossRefGoogle Scholar
  27. (f).
    Chen G, Zhuang Z, Li GC, Saint-Denis TG, Hsiao Y, Joe CL, Yu JQ. Angew Chem Int Ed, 2017, 56: 1506–1509CrossRefGoogle Scholar
  28. (g).
    Cheng G, Wang P, Yu JQ. Angew Chem Int Ed, 2017, 56: 8183–8186CrossRefGoogle Scholar
  29. (h).
    Shang M, Wang MM, Saint-Denis TG, Li MH, Dai HX, Yu JQ. Angew Chem Int Ed, 2017, 56: 5317–5321CrossRefGoogle Scholar
  30. 4.
    Bag S, Patra T, Modak A, Deb A, Maity S, Dutta U, Dey A, Kancherla R, Maji A, Hazra A, Bera M, Maiti D. J Am Chem Soc, 2015, 137: 11888–11891CrossRefGoogle Scholar
  31. 5.
    Wang X, Leow D, Yu JQ. J Am Chem Soc, 2011, 133: 13864–13867CrossRefGoogle Scholar
  32. 6.
    Schranck J, Tlili A, Beller M. Angew Chem Int Ed, 2014, 53: 9426–9428CrossRefGoogle Scholar
  33. 7 (a).
    Huang Z, Jin L, Feng Y, Peng P, Yi H, Lei A. Angew Chem Int Ed, 2013, 52: 7151–7155CrossRefGoogle Scholar
  34. (b).
    Tang S, Liu K, Long Y, Qi X, Lan Y, Lei A. Chem Commun, 2015, 51: 8769–8772CrossRefGoogle Scholar
  35. (c).
    Tang S, Wang P, Li H, Lei A. Nat Commun, 2016, 7: 11676–11683CrossRefGoogle Scholar
  36. (d).
    Zhao Y, Yan H, Lu H, Huang Z, Lei A. Chem Commun, 2016, 52: 11366–11369CrossRefGoogle Scholar
  37. 8 (a).
    Zhang SY, Tu YQ, Fan CA, Zhang FM, Shi L. Angew Chem Int Ed, 2009, 48: 8761–8765CrossRefGoogle Scholar
  38. (b).
    Song G, Wang F, Li X. Chem Soc Rev, 2012, 41: 3651–3678CrossRefGoogle Scholar
  39. (c).
    Jeffrey JL, Petronijević FR, MacMillan DWC. J Am Chem Soc, 2015, 137: 8404–8407CrossRefGoogle Scholar
  40. (d).
    Han Z, Zhang L, Li Z, Fan R. Angew Chem Int Ed, 2014, 53: 6805–6809CrossRefGoogle Scholar
  41. (e).
    Zhang L, Li Z, Fan R. Org Lett, 2012, 14: 6076–6079CrossRefGoogle Scholar
  42. 9.
    Kita Y, Tohma H, Inagaki M, Hatanaka K, Yakura T. Tetrahedron Lett, 1991, 32: 4321–4324CrossRefGoogle Scholar
  43. 10 (a).
    He C, Zhang G, Ke J, Zhang H, Miller JT, Kropf AJ, Lei A. J Am Chem Soc, 2013, 135: 488–493CrossRefGoogle Scholar
  44. (b).
    Zhang G, Yi H, Zhang G, Deng Y, Bai R, Zhang H, Miller JT, Kropf AJ, Bunel EE, Lei A. J Am Chem Soc, 2014, 136: 924–926CrossRefGoogle Scholar
  45. 11.
    DeBeer S, Randall DW, Nersissian AM, Valentine JS, Hedman B, Hodgson KO, Solomon EI. J Phys Chem B, 2000, 104: 10814–10819CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Institute for Advanced Studies, College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  2. 2.National Research Center for Carbohydrate SynthesisJiangxi Normal UniversityNanchangChina

Personalised recommendations