Advertisement

Science China Chemistry

, Volume 61, Issue 8, pp 1020–1024 | Cite as

The determination of thermal junction potential difference

  • Nestor Uwitonze
  • Wei Chen
  • Da Zhou
  • Zhengda He
  • Yan-Xia Chen
Articles
  • 21 Downloads

Abstract

A novel method has been designed and exploited to determine the thermal junction potential difference (TJPD) between two acids or alkalies of the same composition but with different temperature. The absolute value of measured TJPD between two strong acids (or alkalies) maintained at different temperatures increases with increasing of the temperature difference between the two electrolytes over the range from 0 to 40 °C. In strong acids, the hot end always has the lower potential while in strong alkalies, the cold end has the lower potential. This is because the ions of fast diffusion rate contribute most to the TJPD. Our results demonstrate the importance of the correction for TJPD in deriving the kinetic parameters when studying the temperature effect on reaction kinetics.

Keywords

thermal junction potential difference temperature effect electrocatalysis electrode kinetics activation energy 

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB932301) and National Natural Science Foundation of China (21273215, 91545124).

References

  1. 1.
    Garcia-Araez N, Climent V, Feliu JM. Russ J Electrochem. 2012, 48: 271–280CrossRefGoogle Scholar
  2. 2.
    Marković NM, Schmidt TJ, Grgur BN, Gasteiger HA, Behm RJ, Ross PN. J Phys Chem B. 1999, 103: 8568–8577CrossRefGoogle Scholar
  3. 3.
    Grgur BN, Marković NM, Ross PN. Can J Chem. 1997, 75: 1465–1471CrossRefGoogle Scholar
  4. 4.
    Conway BE. J Electrochem Soc. 1989, 136: 2486–2492CrossRefGoogle Scholar
  5. 5.
    Schmidt TJ, Behm RJ, Grgur BN, Markovic NM, Ross PN. Langmuir. 2000, 16: 8159–8166CrossRefGoogle Scholar
  6. 6.
    Sun S, Halseid MC, Heinen M, Jusys Z, Behm RJ. J Power Sources. 2009, 190: 2–13CrossRefGoogle Scholar
  7. 7.
    Gileadi E. Physical Electrochemistry. Weinheim: Wiley-VCH. 2011Google Scholar
  8. 8.
    Mei D, He ZD, Zheng YL, Jiang DC, Chen YX. Phys Chem Chem Phys. 2014, 16: 13762–13773CrossRefPubMedGoogle Scholar
  9. 9.
    Kang J, Lin C, Yao Y, Chen Y. Chin J Chem Phys. 2014, 27: 63–68CrossRefGoogle Scholar
  10. 10.
    Tang Z, Liao L, Zheng Y, Kang J, Chen Y. Chin J Chem Phys. 2012, 25: 469–474CrossRefGoogle Scholar
  11. 11.
    He ZD, Wei J, Chen YX, Santos E, Schmickler W. Electrochim Acta. 2017, 255: 391–395CrossRefGoogle Scholar
  12. 12.
    de Bethune AJ, Licht TS, Swendeman N. J Elecreochem Soc. 1959, 106: 616–625CrossRefGoogle Scholar
  13. 13.
    Brimaud S, Solla-Gullón J, Weber I, Feliu JM, Behm RJ. Chem-ElectroChem. 2014, 1: 1075–1083Google Scholar
  14. 14.
    Perales-Rondón JV, Herrero E, Feliu JM. Electrochim Acta. 2014, 140: 511–517CrossRefGoogle Scholar
  15. 15.
    Iwasita T, Nart FC, Lopez B, Vielstich W. Electrochim Acta. 1992, 37: 2361–2367CrossRefGoogle Scholar
  16. 16.
    Chen QJ. Sci Sin Chim. 2011, 41: 1777CrossRefGoogle Scholar
  17. 17.
    Eastman D. J Am Chem Soc. 1928, 50: 295Google Scholar
  18. 18.
    Dickinson EJF, Freitag L, Compton RG. J Phys Chem B. 2010, 114: 187–197CrossRefPubMedGoogle Scholar
  19. 19.
    Ward KR, Dickinson EJF, Compton RG. J Phys Chem B. 2010, 114: 4521–4528CrossRefPubMedGoogle Scholar
  20. 20.
    Liao LW, Li MF, Kang J, Chen D, Chen YX, Ye S. J Electroan Chem. 2013, 688: 207–215CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nestor Uwitonze
    • 1
  • Wei Chen
    • 1
  • Da Zhou
    • 1
  • Zhengda He
    • 1
  • Yan-Xia Chen
    • 1
  1. 1.Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations