Advertisement

Science China Chemistry

, Volume 60, Issue 12, pp 1596–1601 | Cite as

To form AIE product with the target analyte: A new strategy for excellent fluorescent probes, and convenient detection of hydrazine in seconds with test strips

  • Yuchen Song
  • Luyi Zong
  • Liyao ZhangEmail author
  • Zhen LiEmail author
Articles

Abstract

A new hydrazine probe was designed, which demonstrates ultrafast “turn-on” response towards hydrazine both in solution and as gas, due to the excellent AIE (aggregation-induced emission) characteristic of the yielded products. Excitedly, the corresponding fabricated test strips can report the presence of trace hydrazine as low as 10 nmol/L in aqueous medium in seconds conveniently, with very high selectivity in the pH value ranging from 3.0 to 14.0.

Keywords

hydrazine probe test strips aggregation-induced emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Science Foundation of China (51573140 and 21325416).

Supplementary material

11426_2017_9116_MOESM1_ESM.pdf (1.2 mb)
To form AIE product with the target analyte: a new strategy for excellent fluorescent probes, and convenient detection of hydrazine in seconds with test strips

Supplementary material, approximately 39.2 MB.

References

  1. 1.
    Holtzclaw JR, Rose SL, Wyatt JR, Rounbehler DP, Fine DH. Anal Chem, 1984, 56: 2952–2956CrossRefGoogle Scholar
  2. 2.
    Pinter JS, Brown KL, Deyoung PA, Peaslee GF. Talanta, 2007, 71: 1219–1225CrossRefGoogle Scholar
  3. 3.
    Umar A, Rahman MM, Kim SH, Hahn YB. Chem Commun, 2008, 74: 166–168CrossRefGoogle Scholar
  4. 4.
    Cheng X, Zhou Y, Qin J, Li Z. ACS Appl Mater Interf, 2012, 4: 2133–2138CrossRefGoogle Scholar
  5. 5.
    Zong L, Song Y, Li Q, Li Z. Sensor Actuat B-Chem, 2016, 226: 239–244CrossRefGoogle Scholar
  6. 6.
    Ruan Z, Zong L, Song Y, Hu J, Tu J, Qin J, Li Z. Sensor Actuat B-Chem, 2016, 226: 211–217CrossRefGoogle Scholar
  7. 7.
    Yang J, Li K, Hou JT, Lu CY, Li LL, Yu KK, Yu XQ. Sci China Chem, 2017, 60: 793–798CrossRefGoogle Scholar
  8. 8.
    Lin Y, Li W, Yu Q, Zhou X, Zhang W, Du L, Li M. Sci China Chem, 2016, 59: 624–628CrossRefGoogle Scholar
  9. 9.
    Zhang H, Zhang G, Xu J, Wen Y, Ding W, Zhang J, Ming S, Zhen S. Chin J Polym Sci, 2016, 34: 229–241CrossRefGoogle Scholar
  10. 10.
    Chen X, Zeng W, Yang X, Lu X, Qu J, Liu R. Chin J Polym Sci, 2016, 34: 324–331CrossRefGoogle Scholar
  11. 11.
    Borisov SM, Wolfbeis OS. Chem Rev, 2008, 108: 423–461CrossRefGoogle Scholar
  12. 12.
    Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740–1741Google Scholar
  13. 13.
    Chen J, Law CCW, Lam JWY, Dong Y, Lo SMF, Williams ID, Zhu D, Tang BZ. Chem Mater, 2003, 15: 1535–1546CrossRefGoogle Scholar
  14. 14.
    Zeng Q, Li Z, Dong Y, Di C, Qin A, Hong Y, Ji L, Zhu Z, Jim CKW, Yu G, Li Q, Li Z, Liu Y, Qin J, Tang BZ. Chem Commun, 2007, 80: 70–72CrossRefGoogle Scholar
  15. 15.
    Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ. Adv Mater, 2014, 26: 5429–5479CrossRefGoogle Scholar
  16. 16.
    Hong Y, Chen S, Leung CWT, Lam JWY, Liu J, Tseng NW, Kwok RTK, Yu Y, Wang Z, Tang BZ. ACS Appl Mater Interf, 2011, 3: 3411–3418CrossRefGoogle Scholar
  17. 17.
    Xu X, Huang J, Li J, Yan J, Qin J, Li Z. Chem Commun, 2011, 47: 12385–12387CrossRefGoogle Scholar
  18. 18.
    Liu Y, Wang Z, Qin W, Hu Q, Tang BZ. Chin J Polym Sci, 2017, 35: 365–371CrossRefGoogle Scholar
  19. 19.
    Kwok RTK, Leung CWT, Lam JWY, Tang BZ. Chem Soc Rev, 2015, 44: 4228–4238CrossRefGoogle Scholar
  20. 20.
    Li Q, Li Z. Sci China Chem, 2015, 58: 1800–1809CrossRefGoogle Scholar
  21. 21.
    Niu J, Gao Y, You Y, Zhu Y, Sun J, Tang BZ. Sci China Chem, 2016, 59: 218–224CrossRefGoogle Scholar
  22. 22.
    Gao C, Gao G, Lan J, You J. Chem Commun, 2014, 50: 5623–5625CrossRefGoogle Scholar
  23. 23.
    Liu Y, Yu Y, Lam JWY, Hong Y, Faisal M, Yuan WZ, Tang BZ. Chem Eur J, 2010, 16: 8433–8438CrossRefGoogle Scholar
  24. 24.
    Velte JS. Bull Environ Contam Toxicol, 1984, 33: 598–604CrossRefGoogle Scholar
  25. 25.
    Reilly CA, Aust SD. Chem Res Toxicol, 1997, 10: 328–334CrossRefGoogle Scholar
  26. 26.
    Garrod S, Bollard ME, Nicholls AW, Connor SC, Connelly J, Nicholson JK, Holmes E. Chem Res Toxicol, 2005, 18: 115–122CrossRefGoogle Scholar
  27. 27.
    Dai X, Wang ZY, Du ZF, Miao JY, Zhao BX. Sensor Actuat B-Chem, 2016, 232: 369–374CrossRefGoogle Scholar
  28. 28.
    Ali F, A. AH, Taye N, Mogare DG, Chattopadhyay S, Das A. Chem Commun, 2016, 52: 6166–6169CrossRefGoogle Scholar
  29. 29.
    Zhang R, Zhang CJ, Song Z, Liang J, Kwok RTK, Tang BZ, Liu B. J Mater Chem C, 2016, 4: 2834–2842CrossRefGoogle Scholar
  30. 30.
    Zhang O, Yu H, Lu L, Wen Y, Duan X, Xu J. Chin J Polym Sci, 2012, 31: 419–426CrossRefGoogle Scholar
  31. 31.
    Gao M, Hu Q, Feng G, Tang BZ, Liu B. J Mater Chem B, 2014, 2: 3438–3442CrossRefGoogle Scholar
  32. 32.
    Lee MH, Yoon B, Kim JS, Sessler JL. Chem Sci, 2013, 4: 4121–4126CrossRefGoogle Scholar
  33. 33.
    Xiao L, Tu J, Sun S, Pei Z, Pei Y, Pang Y, Xu Y. RSC Adv, 2014, 4: 41807–41811CrossRefGoogle Scholar
  34. 34.
    Cui L, Peng Z, Ji C, Huang J, Huang D, Ma J, Zhang S, Qian X, Xu Y. Chem Commun, 2014, 50: 1485–1487CrossRefGoogle Scholar
  35. 35.
    Fu Y, Xu W, He Q, Cheng J. Sci China Chem, 2016, 59: 3–15CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of ChemistryWuhan UniversityWuhanChina
  2. 2.College of LifeWuhan UniversityWuhanChina

Personalised recommendations