Science China Chemistry

, Volume 61, Issue 1, pp 135–140 | Cite as

An efficient method for computing excess free energy of liquid

  • Jianing Song
  • Linqiong Qiu
  • John Z. H. Zhang


We present a new theoretical method for efficient calculation of free energy of liquid. This interaction entropy method allows one to compute entropy and free energy of liquid from standard single step MD (molecular dynamics) simulation directly in liquid state without the need to perform MD simulations at many intermediate states as required in thermodynamic integration or free energy perturbation methods. In this new approach, one only needs to evaluate the interaction energy of a single (fixed) liquid molecule with the rest of liquid molecules as a function of time from a standard MD simulation of liquid and the fluctuation of distribution of this interaction energy is then used to calculate the interaction entropy of the liquid. Explicit theoretical derivation of this interaction entropy approach is provided and numerical calculations for the benchmark liquid water system were carried out using three different water models. Numerical analysis of the result was performed and comparison of the computational result with experimental data and other theoretical results were provided. Excellent agreement of calculated free energies with the experimental data using TIP4P model is obtained for liquid water.


excess free energy liquid MD simulation interaction entropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21603144, 21433004), Ministry of Science and Technology of China (2016YFA0501700), NYU Global Seed Grant, Shanghai Putuo District (2014-A-02), and Shanghai Sailing Program (2016YF1408400). We thank the Supercomputer Center of East China Normal University for providing us computer time. We also thank Professor Yongle Li for help in the discussion of the excess free energy of water.


  1. 1.
    Beveridge DL, DiCapua FM. Annu Rev Biophys Biophys Chem, 1989, 18: 431–492CrossRefGoogle Scholar
  2. 2.
    Zacharias M, Straatsma TP, McCammon JA. J Chem Phys, 1994, 100: 9025–9031CrossRefGoogle Scholar
  3. 3.
    Bash PA, Field MJ, Karplus M. J Am Chem Soc, 1987, 109: 8092–8094CrossRefGoogle Scholar
  4. 4.
    Rao SN, Singh UC, Bash PA, Kollman PA. Nature, 1987, 328: 551–554CrossRefGoogle Scholar
  5. 5.
    Kita Y, Arakawa T, Lin TY, Timasheff SN. Biochemistry, 1994, 33: 15178–15189CrossRefGoogle Scholar
  6. 6.
    Rao BG, Singh UC. J Am Chem Soc, 1990, 112: 3803–3811CrossRefGoogle Scholar
  7. 7.
    Kollman P. Chem Rev, 1993, 93: 2395–2417CrossRefGoogle Scholar
  8. 8.
    Jorgensen WL, Thomas LL. J Chem Theor Comput, 2008, 4: 869–876CrossRefGoogle Scholar
  9. 9.
    Duan L, Liu X, Zhang JZH. J Am Chem Soc, 2016, 138: 5722–5728CrossRefGoogle Scholar
  10. 10.
    Sun ZX, Yan YN, Yang MY, Zhang JZH. J Chem Phys, 2017, 146: 124124CrossRefGoogle Scholar
  11. 11.
    Yan Y, Yang M, Ji C, Zhang JZH. J Chem Inf Model, 2017, 57: 1112–1122CrossRefGoogle Scholar
  12. 12.
    Miceli G, Hutter J, Pasquarello A. J Chem Theor Comput, 2016, 12: 3456–3462CrossRefGoogle Scholar
  13. 13.
    Ambrosio F, Miceli G, Pasquarello A. J Phys Chem B, 2016, 120: 7456–7470CrossRefGoogle Scholar
  14. 14.
    Dellerue S, Bellissent-Funel MC. Chem Phys, 2000, 258: 315–325CrossRefGoogle Scholar
  15. 15.
    Russo D, Murarka RK, Copley JRD, Head-Gordon T. J Phys Chem B, 2005, 109: 12966–12975CrossRefGoogle Scholar
  16. 16.
    Wang LP, Head-Gordon T, Ponder JW, Ren P, Chodera JD, Eastman PK, Martinez TJ, Pande VS. J Phys Chem B, 2013, 117: 9956–9972CrossRefGoogle Scholar
  17. 17.
    Gaiduk AP, Gygi F, Galli G. J Phys Chem Lett, 2015, 6: 2902–2908CrossRefGoogle Scholar
  18. 18.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. J Chem Phys, 1983, 79: 926–935CrossRefGoogle Scholar
  19. 19.
    Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T. J Chem Phys, 2004, 120: 9665–9678CrossRefGoogle Scholar
  20. 20.
    Mahoney MW, Jorgensen WL. J Chem Phys, 2000, 112: 8910–8922CrossRefGoogle Scholar
  21. 21.
    Ben-Amotz D, Raineri FO, Stell G. J Phys Chem B, 2005, 109: 6866–6878CrossRefGoogle Scholar
  22. 22.
    Sanchez IC, Truskett TM. J Phys Chem B, 1999, 103: 5106–5116CrossRefGoogle Scholar
  23. 23.
    Stone MT, In’t Veld PJ, Lu Y, Sanchez IC. Mol Phys, 2002, 100: 2773–2792CrossRefGoogle Scholar
  24. 24.
    Darden T, York D, Pedersen L. J Chem Phys, 1993, 98: 10089–10092CrossRefGoogle Scholar
  25. 25.
    Ryckaert JP, Ciccotti G, Berendsen HJC. J Comp Phys, 1977, 23: 327–341CrossRefGoogle Scholar
  26. 26.
    Pastor RW, Brooks BR, Szabo A. Mol Phys, 1988, 65: 1409–1419CrossRefGoogle Scholar
  27. 27.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. J Chem Phys, 1984, 81: 3684–3690CrossRefGoogle Scholar
  28. 28.
    Dashevsky VG, Sarkisov GN. Mol Phys, 1974, 27: 1271–1290CrossRefGoogle Scholar
  29. 29.
    Hermans J, Pathiaseril A, Anderson A. J Am Chem Soc, 1988, 110: 5982–5986CrossRefGoogle Scholar
  30. 30.
    Mezei M, Swaminathan S, Beveridge DL. J Am Chem Soc, 1978, 100: 3255–3256CrossRefGoogle Scholar
  31. 31.
    Matsuoka O, Clementi E, Yoshimine M. J Chem Phys, 1976, 64: 1351–1361CrossRefGoogle Scholar
  32. 32.
    Barone V, Cossi M, Tomasi J. J Chem Phys, 1997, 107: 3210–3221CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jianing Song
    • 1
    • 2
  • Linqiong Qiu
    • 1
    • 3
  • John Z. H. Zhang
    • 1
    • 2
    • 4
  1. 1.School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
  2. 2.NYU-ECNU Center for Computational Chemistry at NYU ShanghaiShanghaiChina
  3. 3.State Key Laboratory of Precision SpectroscopyEast China Normal UniversityShanghaiChina
  4. 4.Department of ChemistryNew York UniversityNYUSA

Personalised recommendations