Skip to main content
Log in

Products and production routes for the catalytic conversion of seed oil into fuel and chemicals: a comprehensive review

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

With the depletion of fossil resources, there is a need to find alternative resources of fuels and chemicals. The use of renewable feedstock such as those from seed oil processing is one of the best available resources that have come to the fore-front recently. This paper critically analyzes and highlights major factors in the biodiesel industry, such as seeds oil composition, production methods, properties of biodiesel, problems and potential solutions of using vegetable seed oil, the composition, quality and effective utilization of crude glycerol, the catalytic conversion of glycerol into possible fuels and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meher LC, Sagar DV, Naik SN. Technical aspects of biodiesel production by transesterification. Renew Sust Energy Rev, 2006, 10: 248–268

    Article  CAS  Google Scholar 

  2. Knothe G, Sharp GCA, Ryan TW. Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuel, 2006, 20: 403–408

    Article  CAS  Google Scholar 

  3. Shah M, Ali S, Tariq M, Khalid N, Ahmad F, Khan MA. Catalytic conversion of jojoba oil into biodiesel by organotin catalysts spectroscopic and chromatographic characterization. Fuel, 2014, 118: 392–397

    Article  CAS  Google Scholar 

  4. Dorado MP, Ballesteros E, Lopez FJ. Optimization of alkali-catalyzed transesterification of brassica carinata oil for biodiesel production. Energy Fuels, 2004, 18: 77–83

    Article  CAS  Google Scholar 

  5. Bamgboye I, Hansen AC. Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester composition. Int Agrophys, 2008, 22: 21–29

    CAS  Google Scholar 

  6. Bajpai D, Tyagi VK. Biodiesel: source, production, composition, properties and its benefits. J Oleo Sci, 2006, 55: 487–502

    Article  CAS  Google Scholar 

  7. Abu-Arabi1 KM, Alawzi AM, Zoubi HSA, Tamimi A. Extraction of jojoba oil by pressing and leaching. J Chem Eng, 2000, 76: 61–65

    Article  CAS  Google Scholar 

  8. Mittelbach M, Remchmidt C. Biodiesel, the Comprehensive Hand Book. Vienna: Boersedruck Ges MBH, 2004

    Google Scholar 

  9. Akbar E, Yaakob Z, Kamarudin SK, Ismail M, Salimon J. Characteristic and composition of Jatropha curcas oil from Malaysia and its potential as biodiesel feedstock. Eur J Sci Res, 2009, 29: 396–403

    Google Scholar 

  10. Gunstone FD. Rapseed and Canola Oil, Production, Properties, Processing and Uses. 1st ed. UK: Blackwell, 2004

    Google Scholar 

  11. Fang L, Xing R, Wu HH, Li XH, Liu YM, Wu P. Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers. Sci China Chem, 2010, 53: 1481–1486

    Article  CAS  Google Scholar 

  12. Eckey EW. Esterification and interesterification. J Am Oil Chem Soc, 1956, 33: 575–579

    Article  Google Scholar 

  13. Kim HJ, Kang BS, Kim MJ, Park YM, Kim DK, Lee JS. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today, 2004, 93: 315–320

    Article  Google Scholar 

  14. Keim KI. Process for treatment of fatty glycerides. US Patent 2. 1945

    Google Scholar 

  15. Gunstone FD, Harwood JL, Padley FD. Lipid Hand Book. 2nd ed. London: Chapman and Hall, 1994

    Google Scholar 

  16. Applewhite TH, Kirk-Othemer DF. Encyclopedia of Chemical Technology. 3rd ed. Vol. 9. New York: John Wiley & Sons, 1980. 795–811

    Google Scholar 

  17. Ahmad M, Khan MA, Zafar M, Sultana S. Biodiesel from non-edible oil seeds: a renewable source of bioenergy, economic effects of biofuel production. InTech Europe, 2011

    Google Scholar 

  18. Chen L, Liu T, Zhang W, Chen X, Wang J. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresource Technol, 2012, 111: 208–214

    Article  CAS  Google Scholar 

  19. Bello EI, Anjorin SA. Fatty acid compositions of six Nigeria’s vegetable oils and their methyl esters. Res J Engine Appl Sci, 2012, 1: 166–170

    Google Scholar 

  20. Tiwari AK, Kumar A, Raheman H. Biodiesel production from jatropha oil with high free fatty acids: an optimized process. Biomass Boenerg, 2007, 31: 569–575

    Article  Google Scholar 

  21. Usta N. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass Bioenerg, 2005, 28: 77–86

    Article  CAS  Google Scholar 

  22. Aranda F, Gomez-Alonso S, Rivera del Alamo RM, Salvador MD, Fregapane G. Triglyceride, total and 2-position fatty acid composition of Cornicabra virgin olive oil: comparison with other Spanish cultivars. Food Chem, 2004, 86: 485–492

    Article  CAS  Google Scholar 

  23. Sinha S, Agarwal AK, Garg S. Biodiesel development from rice bran oil: transesterification process optimization and fuel characterization. Energy Convers Manage, 2008, 49: 1248–1257

    Article  CAS  Google Scholar 

  24. Ayten S, Şebnem SI, Hakki OM, Hatice P, Toprakkiran NM. Comparison of biodiesel productivities of different vegetable oils by acidic catalysis. Chem Ind Chem Eng Q, 2011, 17: 53–58

    Article  Google Scholar 

  25. Huang YS, Chen YH, Shang NC, Chang CH, Lu TL, Chang CY, Shie JL. Comparison of biodiesels produced from waste and virgin vegetable oils. Sustain Environ Res, 2010, 20: 417–422

    Google Scholar 

  26. Formo MW. Ester reactions of fatty materials. J Am Oil Chem Soc, 1954, 31: 548–559

    Article  CAS  Google Scholar 

  27. Du W, Xu Y, Liu D, Zeng J. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B: Enz, 2004, 30: 125–129

    Article  CAS  Google Scholar 

  28. Shimada Y, Sugihara A, Minamigawa Y, Akimoto K, FujiKawa S, Komemushi S, Tominaga Y. Enzymatic enrichment of arachidonic acid from Mortierella single-cell oil. J Am Oil Chem Soc, 1998, 75: 1213–1217

    Article  CAS  Google Scholar 

  29. Mathiyazhagan M, Ganapathi A. Factors affecting biodiesel production. Res Plant Biol, 2011, 1: 1–5

    Google Scholar 

  30. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JJG. Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res, 2005, 44: 5353–5363

    Article  CAS  Google Scholar 

  31. Haas MJ. The interplay between feedstock quality and esterification technology in biodiesel production. Lipid Technol, 2004, 16: 7–11

    CAS  Google Scholar 

  32. Rashid U, Anwar F. Production of Biodiesel through base-catalyzed transesterification of Safflower oil using an optimized protocol. Energy Fuel, 2008, 22: 1306–1312

    Article  CAS  Google Scholar 

  33. Koria L, Thangaraj T. Optimization of biodiesel production process in Datura Stramonium seed oil, a non-edible source. J Ecobiotechnol, 2010, 5: 42–46

    Google Scholar 

  34. Shikha K, Rita CY. Biodiesel production from non-edible oils: a review. J Chem Pharm Res, 2012, 4: 4219–4230

    Google Scholar 

  35. Freedman B, Pryde EH, Mounts TL. Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc, 1984, 61: 1638–1643

    Article  CAS  Google Scholar 

  36. Hitesh J. Yadav, Pravin PP, Arvind SS. Biodiesel preparation from Karanja oil. Int J Adv Eng Res Stud, 2012, 1: 42–46

    Google Scholar 

  37. Boocock DGB, Konar SK, Mao V, Sidi H. Fast one phase oil rich processes for the preparation of vegetable oil methyl esters. Biomass Bioenerg, 1996, 11: 43–50

    Article  CAS  Google Scholar 

  38. Boocock DGB, Konar SK, Mao V, Lee C, Bulugan S. Fast formation of high purity methyl esters from vegetable oils. J Am Oil Chem Soc, 1998, 75: 1167–1172

    Article  CAS  Google Scholar 

  39. Peterson C, Moller G, Haws R, Zhang X, Thompson J, Reece D. Ethyl ester process scale up and biodegradability of biodiesel. Final Report. Moscow: College of Agriculture, University of Idaho, 1996

    Google Scholar 

  40. Encinar JM, Gonzalez JF, Sabio E, Ramiro MJ. Preparation and properties of biodiesel from cynara cardunculus L. oil. Ind Eng Chem Res, 1999, 38: 2927–2931

    Article  CAS  Google Scholar 

  41. Abreu FR, Lima DG, Hamu EH, Einloft S, Rubim JC, Suarez PAZ. New metal catalysts for soybean oil transesterification. J Am Oil Chem Soc, 2003, 80: 601–604

    Article  CAS  Google Scholar 

  42. Canakci M, Gerpen JV. Biodiesel production via acid catalysis. Trans ASAE, 1999, 42: 1203–1210

    Article  CAS  Google Scholar 

  43. Nye MJ, Willianson TW, Deshpande S, Schrader JH, Snively WH, Yurkewich TP, Frech CR. Conversion of used frying oil to diesel fuel by transesterification, preliminary test. J Am Oil Chem Soc, 1983, 60: 1598–1601

    Article  CAS  Google Scholar 

  44. Huang HS, Liu ZH. Transesterification of glyceryl tributyrate with methanol using strontium borate as the solid base catalyst. Sci China Chem, 2013, 56: 1727–1734

    Article  CAS  Google Scholar 

  45. Schuchardt U, Vargas RM, Gelbard G. Transesterification of soybean oil catalyzed by alkylguanidines heterogenized on different substituted polystyrenes. J Mol Catal A: Chem, 1996, 109: 37–44

    Article  CAS  Google Scholar 

  46. Peter SKF, Ganswindt R, Neuner HP, Weidner E. Alcoholysis of triacylglycerols by heterogeneous catalysis. Eur J Lipid Sci Technol, 2002, 104: 324–330

    Article  CAS  Google Scholar 

  47. Suppes GJ, Bockwinkel K, Lucas S, Botts JB, Mason MH, Heppert AJ. Calcium carbonate catalyzed alcoholysis of fats and oils. J Am Oil Chem Soc, 2001, 78: 139–146

    Article  CAS  Google Scholar 

  48. Zhang J, Chen S, Yang R, Yan Y. Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel, 2010, 89: 2939–2944

    Article  CAS  Google Scholar 

  49. Zabeti M, Wan Daud WMA, Aroua MK. Activity of solid catalysts for biodiesel production. Fuel Process Technol, 2009, 90: 770–777

    Article  CAS  Google Scholar 

  50. Monteiro RS, Cruz RS. Abstracts of the 27a Reunião anual da sociedade brasileira de química and XXVI congresso latinoamericano de química. Brazil: Salvador, 2004

    Google Scholar 

  51. Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL. Microbial production of 1, 3-propanediol by Klebsiella pneumonia using crude glycerol from biodiesel preparations. Biotechnol Lett, 2006, 28: 1755–1759

    Article  CAS  Google Scholar 

  52. Ondrey G. Biodiesel production using a heterogeneous catalyst. Chem Eng, 2004, 111: 13

    Google Scholar 

  53. Melero JM, Vicente G, Paniagua M, Morales G, Munoz P. Synthesis of oxygenated compounds for fuel formulation; etherification of glycerol with ethanol over sulfonic modified catalyst. Bioresource Technol, 2012, 103: 142–151

    Article  CAS  Google Scholar 

  54. Van Gerpen J. Biodiesel processing and production. Fuel Process Technol, 2005, 86: 1097–1107

    Article  Google Scholar 

  55. Stein YS, Antal MJ Jr, Jones M. A study of the gas-phase pyrolysis of glycerol. J Anal Appl Pyrol, 1983, 4: 283–296

    Article  CAS  Google Scholar 

  56. Onwudili JA, Williams PT. Hydrothermal reforming of bio-diesel plant waste: products distribution and characterisation. Fuel, 2010, 89: 501–509

    Article  CAS  Google Scholar 

  57. Zakaria ZY, Mohamad MF, Amin NAS. Catalysts screening for catalytic conversion of glycerol to olefins. J Appl Sci, 2010, 10: 1166–1170

    Article  CAS  Google Scholar 

  58. Shabaker JW, Huber GW, Dumesic JA. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. J Catal, 2004, 222: 180–191

    Article  CAS  Google Scholar 

  59. Dauenhauer PJ, Salge JR, Schmidt LD. Renewable hydrogen by autothermal steam reforming of volatile carbohydrates. J Catal, 2006, 244: 238–247

    Article  CAS  Google Scholar 

  60. Hirai T, Ikenaga NO, Miyake T, Suzuki T. Production of hydrogen by steam reforming of glycerin on ruthenium catalyst. Energy Fuel, 2005, 19: 1761–1762

    Article  CAS  Google Scholar 

  61. Klepacova K, Mravec D, Hajekova E, Bajus M. Etherification of glycerol. Petrol Coal, 2003, 45: 54–57

    CAS  Google Scholar 

  62. Pariente S, Tanchoux N, Fajula F. Etherification of glycerol with ethanol over acid catalysts. Green Chem, 2009, 11: 1256–1261

    Article  CAS  Google Scholar 

  63. Melero JA, Grieken RV, Morales G, Paniagua M. Acidic mesoporous silica for the acetylation of glycerol: synthesis of bio-additives to petrol fuel. Energy Fuels, 2007, 21: 1782–1791

    Article  CAS  Google Scholar 

  64. Melero JA, Vicente G, Morales G, Paniagua M, Moreno JM, Roldan R, Ezquerro A, Perez C. Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic meso-structured silica. Appl Catal A: Gen, 2008, 346: 44–51

    Article  CAS  Google Scholar 

  65. Melero JA, Vicente G, Paniagua M, Morales G, Muñoz P. Synthesis of oxygenated compounds for fuel formulation: etherification of glycerol with ethanol over sulfonic modified catalysts. Bioresource Technol, 2012, 103: 142–151

    Article  CAS  Google Scholar 

  66. Ruppert AM, Meeldijk DJ, Kuipers BWM, Ern BH, Weckhuysen BM. On the role of colloidal particles on the base catalyzed etherification of glycerol. Chem Eur J, 2008, 14: 2016–2024

    Article  CAS  Google Scholar 

  67. Barrault J, Clacens JM, Pouilloux Y. Selective oligomerization of glycerol over mesoporous catalysts. Top Catal, 2004, 27: 137–142

    Article  CAS  Google Scholar 

  68. Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y. Selective oxidation of glycerol on a platinum-bismuth catalyst. Appl Catal A: Gen, 1993, 96: 217–228

    Article  CAS  Google Scholar 

  69. Abbadi A, Bekkum HV. Selective chemocatalytic routes for the preparation of β-hydroxypyruvic acid. Appl Catal A: Gen, 1996, 148: 113–122

    Article  CAS  Google Scholar 

  70. Garcia R, Besson M, Gallezot P. Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl Catal A: Gen, 1995, 127:165–170

    Article  CAS  Google Scholar 

  71. Porta F, Prati LS. Selective oxidation of glycerol to sodium glycerate with Au/C catalyst: an insight into reaction selectivity. J Catal, 2004, 224: 397–403

    Article  CAS  Google Scholar 

  72. Kwon Y, Birdja Y, Spanos I, Rodriguez P, Koper MTM. Highly selective electro-oxidation of glycerol to dihydroxyacetone on Pt in the Presence of Bi. ACS Catal, 2012, 2: 759–764

    Article  CAS  Google Scholar 

  73. Waldmann H, Frantisek P. The dehydration of alcohols using phthalic anhydride. Chemische Berichte, 1950, 83: 287–291

    Article  CAS  Google Scholar 

  74. Ramayya S, Brittain A, Dealmeida C, Mok W, Antal MJ. Acid catalysed dehydration of alcohols in supercritical water. Fuel, 1987, 66: 1364–1371

    Article  CAS  Google Scholar 

  75. Zsigmond A, Bata P, Fekete M, Notheisz F. Catalytic dehydration of glycerol under mild condition: An environmentally benign acrolein production. J Environ Prot, 2010, 1: 201–205

    Article  CAS  Google Scholar 

  76. Kim YT, Jung KD, Park ED. Gas-phase dehydration of glycerol over supported silico-tungstic acids catalysts. Bull Korean Chem Soc, 2010, 31: 3283–3290

    Article  CAS  Google Scholar 

  77. Buhler W, Dinjus E, Ederer HJ, Kruse A, Mas C. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. J Supercritical Fluid, 2002, 22: 37–53

    Article  CAS  Google Scholar 

  78. Ott L, Bicker M, Vogel H. Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production. Green Chem, 2006, 8: 214–220

    Article  CAS  Google Scholar 

  79. Che TM. Production of propanediols. US Pattent, 4642394, 1987

    Google Scholar 

  80. Schlaf M, Ghosh P, Fagan PJ, Hauptman E, Bullock RM. Metal catalyzed selective deoxygenation of diols. Angew Chem Int Ed, 2001, 40: 3887–3890

    Article  CAS  Google Scholar 

  81. Montassier C, Giraud D, Barbier J. Polyol conversion by liquid-phase heterogeneous catalysis over metals. Stud Surf Sci Catal, 1988, 41: 165–170

    Article  CAS  Google Scholar 

  82. Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel C, Rosier C. Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem, 2004, 6: 359–361

    Article  CAS  Google Scholar 

  83. Balaraju M, Jagadeeswaraiah K, Sai Prasad PS, Lingaiah N. Catalytic hydrogenolysis of biodiesel derived glycerol to 1,2-propanediol over Cu-MgO catalysts. Catal Sci Technol, 2012, 2: 1967–1976

    Article  CAS  Google Scholar 

  84. Perosa A, Tundo P. Selective hydrolysis of glycerol with Raney nickel. Ind Eng Chem Res, 2005, 44: 8535–8537

    Article  CAS  Google Scholar 

  85. Corma A, Iborra S, Miquel S, Primo J. Catalysts for the production of fine chemicals: production of food emulsifiers, monoglycerides, by glycerolysis of Fats with solid base catalysts. J Catal, 1998, 173: 315–321

    Article  CAS  Google Scholar 

  86. Barrault J, Bancquart S, Pouilloux Y, Chim CR. Selective glycerol transesterification over mesoporous basic catalysts. Inter J Chem, 2004, 7: 593–599

    CAS  Google Scholar 

  87. Kotwal M, Deshpande SS, Srinivas D. Esterification of fatty acids with glycerol over Fe-Zn double-metal cyanide catalyst. Catal Commun, 2011, 12: 1302–1306

    Article  CAS  Google Scholar 

  88. Liao X, Zhu Y, Wang SG, Li Y. Producing triacetylglycerol with glycerol by two steps: esterification and acetylation. Fuel Process Technol, 2009, 90: 988–993

    Article  CAS  Google Scholar 

  89. Bai R, Wang Y, Wang S, Mei F, Li T, Li G. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by NaOH/γ-Al2O3. Fuel Process Technol, 2013, 106: 209–214

    Article  CAS  Google Scholar 

  90. Pan SY, Zheng LP, Nie RF, Xia SX, Chen P, Hou ZY. Transesterification of glycerol with dimethyl carbonate to glycerol carbonate over Na-based zeolites. Chin J Chem, 2012, 33: 1272–1277

    Google Scholar 

  91. Wang LY, Liu Y, Liu CL, Yang RZ, Dong WS. An efficient catalytic system for the synthesis of glycerol carbonate by oxidative carbonylation of glycerol. Sci China Chem, 2013, 56: 1455–1462

    Article  Google Scholar 

  92. Kao Corp. Process for the preparation of glycerol carbonate. World Patent, WO 0050415, 2000

    Google Scholar 

  93. Pagliaro M, Rossi M. Esterification, in the Future of Glycerol, New Usages for a Versatile Raw Material. RSC Green Chemistry Book Series. Cambridge: RSC Publishing, 2008. 73–85

    Google Scholar 

  94. Aresta M, Dibenedetto A, Nocito F, Pastore C. A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Catal A Chem, 2006, 257: 149–53

    Article  CAS  Google Scholar 

  95. Malkemus JD, Currier VA, Bell JB. Method for preparing glycidol. US Patent, 2856413, 1958

    Google Scholar 

  96. Gómez-Jiménez-Aberasturi O, Ochoa-Gómez JR, Pesquera-Rodríguez A, Ramírez-López C, Alonso-Vicario A, Torrecilla-Soria J. Solvent free synthesis of glycerol carbonate and glycidol from 3-chloro-1,2-propanediol and potassium (hydrogen) carbonate. J Chem Technol Biotechnol, 2010, 85: 1663–1670

    Article  Google Scholar 

  97. Gade SM, Munshi MK, Chherawalla BM, Rane VH, Kelkar AA. Synthesis of glycidol from glycerol and dimethyl carbonate using ionic liquid as a catalyst. Catal Commun, 2012, 27: 184–188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Xiang Guo or Yao Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M., Dai, JJ., Guo, QX. et al. Products and production routes for the catalytic conversion of seed oil into fuel and chemicals: a comprehensive review. Sci. China Chem. 58, 1110–1121 (2015). https://doi.org/10.1007/s11426-015-5397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5397-7

Keywords

Navigation