Skip to main content
Log in

Bifunctional fluorescent probes for hydrogen peroxide and diols based on a 1,8-naphthalimide fluorophore

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This report discloses a series of naphthalimide-based bifunctional fluorescent probes for hydrogen peroxide and diols. As a result, these molecules not only demonstrated high turn-on fluorescent response and good selectivity towards hydrogen peroxide over other relevant reactive oxygen species, but also displayed different responses to diols. Therefore, these fluorescent probes could be served as sensitive, selective and practical chemosensors for both hydrogen peroxide and diols under physiological-like conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rhee SG. H2O2, a necessary evil for cell signaling. Science, 2006, 312: 1882–1883

    Article  Google Scholar 

  2. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Molecular Cell, 2007, 26: 1–14

    Article  CAS  Google Scholar 

  3. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem, 1997, 272: 217–221

    Article  CAS  Google Scholar 

  4. Azar ZM, Mehdi MZ, Srivastava AK. Activation of insulin-like growth factor type-1 receptor is required for H2O2-induced PKB phosphorylation in vascular smooth muscle cells. Can J Physiol Pharmacol, 2006, 84: 777–786

    Article  CAS  Google Scholar 

  5. Ohba M, Shibanuma M, Kuroki T, Nose K. Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol, 1994, 126: 1079–1088

    Article  CAS  Google Scholar 

  6. Strassheim D, Asehnoune K, Park JS, Kim JY, He QB, Richter D, Mitra S, Arcaroli J, Kuhn K, Abraham E. Modulation of bone marrow-derived neutrophil signaling by H2O2: Disparate effects on kinases, NF-kappa B, and cytokine expression. Am J Physiol Cell Physiol, 2004, 286: C683–C692

    Article  CAS  Google Scholar 

  7. Geiszt M, Leto TL. The Nox family of NAD(P)H oxidases: Host defense and beyond. J Biol Chem, 2004, 279: 51715–51718

    Article  CAS  Google Scholar 

  8. Park HS, Lee SH, Park D, Lee JS, Ryu SH, Lee WJ, Rhee SG, Bae YS. Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2. Mol Cell Biol, 2004, 24: 4384–4394

    Article  CAS  Google Scholar 

  9. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science, 1995, 270: 296–299

    Article  CAS  Google Scholar 

  10. Rhee SG, Bae YS, Lee SR, Kwon J. Hydrogen peroxide: A key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE, 2000, 2000: 1–6

    Article  Google Scholar 

  11. Sun W, Wu J, Li J, Fang H, Du L, Li M. Boronate can be the fluorogenic switch for the detection of hydrogen peroxide. Curr Med Chem, 2012, 19: 3622–3634

    Article  CAS  Google Scholar 

  12. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ, 2nd, Ischiropoulos H. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic Biol Med, 2012, 52: 1–6

    Article  CAS  Google Scholar 

  13. Lippert AR, Van de Bittner GC, Chang CJ. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc Chem Res, 2011, 44: 793–804

    Article  CAS  Google Scholar 

  14. Rhee SG, Chang TS, Jeong W, Kang D. Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells, 2010, 29: 539–549

    Article  CAS  Google Scholar 

  15. Du LP, Ni NT, Li MY, Wang BH. A fluorescent hydrogen peroxide probe based on a ‘click’ modified coumarin fluorophore. Tetrahedron Lett, 2010, 51: 1152–1154

    Article  CAS  Google Scholar 

  16. Du LP, Li MY, Zheng SL, Wang BH. Rational design of a fluorescent hydrogen peroxide probe based on the umbelliferone fluorophore. Tetrahedron Lett, 2008, 49: 3045–3048

    Article  CAS  Google Scholar 

  17. Kuivila HG, Armour AG. Electrophilic displacement reactions. IX. Effects of substituents on rates of reactions between hydrogen peroxide and benzeneboronic Acid1–3. J Am Chem Soc, 1957, 79: 5659–5662

    Article  CAS  Google Scholar 

  18. Kuivila HG, Wiles RA. Electrophilic displacement reactions. VII. Catalysis by chelating agents in the reaction between hydrogen peroxide and benzeneboronic acid1,2,3. J Am Chem Soc, 1955, 77: 4830–4834

    Article  CAS  Google Scholar 

  19. Zielonka J, Sikora A, Hardy M, Joseph J, Dranka BP, Kalyanaraman B. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides. Chem Res Toxicol, 2012, 25: 1793–1799

    Article  CAS  Google Scholar 

  20. Wu Z, Li M, Fang H, Wang B. A new boronic acid based fluorescent reporter for catechol. Bioorg Med Chem Lett, 2012, 22: 7179–7182

    Article  CAS  Google Scholar 

  21. Gunnlaugsson T, Kruger PE, Jensen P, Tierney J, Ali HD, Hussey GM. Colorimetric “naked eye” sensing of anions in aqueous solution. J Org Chem, 2005, 70: 10875–10878

    Article  CAS  Google Scholar 

  22. Sun W, Li W, Li J, Zhang J, Du L, Li M. Naphthalimide-based fluorescent off/on probes for the detection of thiols. Tetrahedron, 2012, 68: 5363–5367

    Article  CAS  Google Scholar 

  23. Shen QJ, Jin WJ. Chemical and photophysical mechanism of fluorescence enhancement of 3-quinolineboronic acid upon change of pH and binding with carbohydrates. Luminescence, 2010, 26: 494–499

    Article  Google Scholar 

  24. Jin S, Wang J, Li M, Wang B. Synthesis, evaluation, and computational studies of naphthalimide-based long-wavelength fluorescent boronic Acid reporters. Chemistry, 2008, 14: 2795–2804

    Article  CAS  Google Scholar 

  25. Springsteen G, Wang BH. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002, 58: 5291–5300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LuPei Du or MinYong Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, W., Ma, Z., Li, J. et al. Bifunctional fluorescent probes for hydrogen peroxide and diols based on a 1,8-naphthalimide fluorophore. Sci. China Chem. 56, 1440–1445 (2013). https://doi.org/10.1007/s11426-013-4870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4870-4

Keywords

Navigation