Advertisement

Topologically conjugate classifications of the translation actions on low-dimensional compact connected Lie groups

  • Xiaotian Pan
  • Bingzhe HouEmail author
Articles

Abstract

In this article, we focus on the left translation actions on noncommutative compact connected Lie groups with topological dimension 3 or 4, consisting of SU(2), U(2), SO(3), SO(3) × S1 and Spin(3). We define the rotation vectors (numbers) of the left actions induced by the elements in the maximal tori of these groups, and utilize rotation vectors (numbers) to give the topologically conjugate classification of the left actions. Algebraic conjugacy and smooth conjugacy are also considered. As a by-product, we show that for any homeomorphism f : L(p, −1) × S1L(p, −1) × S1, the induced isomorphism (τfi)* maps each element in the fundamental group of L(p, −1) to itself or its inverse, where i : L(p, −1) → L(p, −1) × S1 is the natural inclusion and τ : L(p, −1) × S1L(p, −1) is the projection.

Keywords

topological conjugacy rotation vectors translation actions C*-dynamical system classification 

MSC(2010)

37C15 55S37 22C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler R L, Palais R. Homeomorphic conjugacy of automorphisms on the torus. Proc Amer Math Soc, 1965, 16: 1222–1225MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Adler R L, Tresser C, Worfolk P. Topological conjugacy of linear endomorphisms of the 2-torus. Trans Amer Math Soc, 1997, 394: 1633–1652MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bhattacharya S. Orbit equivalence and topological conjugacy of affine actions on compact abelian groups. Monatsh Math, 2000, 129: 89–96MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bhattacharya S. Topological conjugacy of automorphism flows on compact Lie groups. Ergodic Theory Dynam Syst, 2000, 20: 335–342MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Connes A. A new proof of Morley’s theorem. Publ Math Inst Hautes Etudes Sci, 1998, S88: 43–46MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dávalos P. On torus homeomorphisms whose rotation set is an interval. Math Z, 2013, 275: 1005–1045MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Elliott G. The classification problem for amenable C*-algebras. In: Proceedings of the International Congress of Mathematicians. Basel: Birkhäuser, 1994, 922–932Google Scholar
  8. 8.
    Elliott G, Gong G. On inductive limits of matrix algebras over the two-torus. Amer J Math, 1996, 118: 263–290MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Elliott G, Gong G. On the classification of C*-algebras of real rank zero II. Ann of Math (2), 1996, 144: 497–610MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Elliott G, Gong G, Li L. On the classification of simple inductive limit C*-algebras II: The isomorphism theorem. Invent Math, 2007, 168: 249–320MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Elliott G, Ivanescu C. The classification of separable simple C*-algebras which are inductive limits of continuous-trace C*-algebras with spectrum homeomorphic to the closed interval [0,1]. J Funct Anal, 2007, 254: 879–903MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Elliott G, Li H. Morita equivalence of smooth noncommutative tori. Acta Math, 2007, 199: 1–27MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Elliott G, Li H. Strong Morita equivalence of higher-dimensional noncommutative tori II. Math Ann, 2008, 341: 825–844MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Franks J. Anosov diffeomorphism. In: Global Analysis. Proceedings of Symposia in Pure Mathematics, vol. 14. Providence: Amer Math Soc, 1970, 61–93MathSciNetCrossRefGoogle Scholar
  15. 15.
    Franks J. Realizing rotation vectors for torus homeomorphisms. Trans Amer Math Soc, 1989, 311: 107–115MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Giordano T, Putnam I, Skau C. Topological orbit equivalence and C*-crossed products. J Reine Angew Math, 1995, 469: 51–111MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gong G. Classification of C*-algebras of real rank zero and unsuspended E-equivalence types. J Funct Anal, 1998, 152: 281–329MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hatcher A. Notes on basic 3-manifold topology. Topology, 2000, 138: 2244–2247Google Scholar
  19. 19.
    Hou B, Liu H, Pan X. Mutual embeddability equivalence relation for rotation algebras. J Math Anal Appl, 2017, 452: 495–504MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Husemoller D. Fibre Bundles. Berlin-Heidelberg-New York: Springer, 1966zbMATHCrossRefGoogle Scholar
  21. 21.
    Koropecki A. On the dynamics of torus homeomorphisms. PhD Thesis. Rio de Janeiro: Instituto de Matematica Pura e Aplicada, 2008zbMATHGoogle Scholar
  22. 22.
    Kuiper N H, Robbin J W. Topological classification of linear endomorphisms. Invent Math, 1973, 19: 83–106MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kwasik S, Schultz R. On s-cobordisms of metacyclic prism manifolds. Invent Math, 1989, 97: 526–552MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Li H. Strong Morita equivalence of higher-dimensional noncommutative tori. J Reine Angew Math, 2004, 576: 167–180MathSciNetzbMATHGoogle Scholar
  25. 25.
    Lin H. Classification of simple C*-algebras and higher dimensional noncommutative tori. Ann of Math (2), 2003, 157: 521–544MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lin H. Classification of simple C*-algebras of tracial topological rank zero. Duke Math J, 2004, 125: 91–119MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lin H. Furstenberg transformations and approximate conjugacy. Canad J Math, 2008, 60: 189–207MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Lin H. On Locally AH Algebras. Memoris of the American Mathematical Society, vol. 235. Providence: Amer Math Soc, 2015Google Scholar
  29. 29.
    Lin H. Crossed products and minimal dynamical systems. J Topol Anal, 2018, 10: 447–469MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Lin H, Phillips N C. Crossed products by minimal homeomorphisms. J Reine Angew Math, 2010, 641: 95–122MathSciNetzbMATHGoogle Scholar
  31. 31.
    Liu H. Smooth crossed product of minimal unique ergodic diffeomorphism of odd sphere. J Noncommut Geom, 2017, 11: 1381–1393MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Liu H. Smooth crossed product of minimal unique ergodic diffeomorphisms of a manifold and cyclic cohomology. J Topol Anal, 2019, 11: 739–751MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Manning A. There are no new Anosov diffeomorphisms on tori. Amer J Math, 1974, 96: 422–429MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Pimsner M, Voiculescu D. Exact sequences for K-groups and Ext-groups of certain cross-product C*-algebras. J Operator Theory, 1980, 4: 93–118MathSciNetzbMATHGoogle Scholar
  35. 35.
    Price J F. Lie Groups and Compact Groups. Cambridge: Cambridge University Press, 1977zbMATHCrossRefGoogle Scholar
  36. 36.
    Rieffel M. C*-algebras associated with irrational rotations. Pacific J Math, 1981, 93: 415–429MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Robbin J W. Topological conjugacy and structural stability for discrete dynamical systems. Bull Amer Math Soc, 1972, 78: 923–952MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Schultz R. On the topological classification of linear representations. Topology, 1977, 16: 263–269MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Sepanski M R. Compact Lie Groups. New York: Springer, 2007zbMATHCrossRefGoogle Scholar
  40. 40.
    Smale S. Dynamical systems and the topological conjugacy problem for diffeomorphisms. In: Proceedings of the International Congress of Mathematicians. Djursholm: Inst Mittag-Leffler, 1963, 490–496Google Scholar
  41. 41.
    Sun H. Degree ±1 self-maps and self-homeomorphisms on prime 3-manifolds. Algebr Geom Topol, 2010, 10: 867–890MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Swanson R, Walker R. Boundaries of rotation sets for homeomorphisms of the n-torus. Proc Amer Math Soc, 1996, 124: 3247–3255MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Tal F. Transitivity and rotation sets with nonempty interior for homeomorphisms of the 2-torus. Proc Amer Math Soc, 2012, 140: 3567–3579MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Tomiyama J. Topological full groups and structure of normalizers in transformation group C*-algebras. Pacific J Math, 1996, 173: 571–583MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Toms A, Winter W. Minimal dynamics and the classification of C*-algebras. Proc Natl Acad Sci USA, 2009, 106: 16942–16943MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Walters P. Topological conjugacy of affine transformations of tori. Trans Amer Math Soc, 1968, 131: 40–50MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Walters P. Topological conjugacy of affine transformations of compact abelian groups. Trans Amer Math Soc, 1969, 140: 95–107MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Weinberger S. Some remarks inspired by the C 0 Zimmer program. In: Geometry, Rigidity, and Group Actions. Chicago Lectures in Mathematics. Chicago: University of Chicago Press, 2011, 262–282Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MathematicsJilin UniversityChangchunChina

Personalised recommendations