Science China Mathematics

, Volume 62, Issue 6, pp 1219–1232 | Cite as

Enhanced dissipation for the Kolmogorov flow via the hypocoercivity method

  • Dongyi Wei
  • Zhifei ZhangEmail author


In this paper, we solve Beck and Wayne’s conjecture on the optimal enhanced dissipation rate for the 2-D linearized Navier-Stokes equations around the bar state called the Kolmogorov flow by developing the hypocoercivity method introduced by Villani (2009).


Navier-Stokes equations Kolmogorov flow enhanced dissipation hypocoercivity method 


35Q35 35Q30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Natural Science Foundation of China (Grant No. 11425103).


  1. 1.
    Beck M, Wayne C E. Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier-Stokes equations. Proc Roy Soc Edinburgh Sect A, 2013, 143: 905–927MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bedrossian J, Coti Zelati M. Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch Ration Mech Anal, 2017, 224: 1161–120MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bouchet F, Simonnet E. Random changes of ow topology in two dimensional and geophysical turbulence. Phys Rev Lett, 2009, 102: 094504CrossRefGoogle Scholar
  4. 4.
    Constantin P, Kiselev A, Ryzhik L, et al. Diffusion and mixing in fluid fl ow. Ann of Math (2), 2008, 168: 643–674MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Coti Zelati M, Delgadino M G, Elgindi T M. On the relation between enhanced dissipation time-scales and mixing rates. ArXiv:1806.03258, 2018Google Scholar
  6. 6.
    Couder Y. Observation expérimentale de la turbulence bidimensionnelle dans un film liquide mince. C R Acad Sci Paris Sér II, 1983, 297: 641–645Google Scholar
  7. 7.
    Deng W. Pseudospectrum for Oseen vortices operators. Int Math Res Not IMRN, 2013, 9: 1935–1999MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gallagher I, Gallay T, Nier F. Special asymptotics for large skew-symmetric perturbations of the harmonic oscillator. Int Math Res Not IMRN, 2009, 12: 2147–2199zbMATHGoogle Scholar
  9. 9.
    Grenier E, Nguyen T T, Rousset F, et al. Linear inviscid damping and enhanced viscous dissipation of shear fl ows by using the conjugate operator method. ArXiv:1804.0829, 2018Google Scholar
  10. 10.
    Ibrahim S, Maekawa Y, Masmoudi N. On pseudospectral bound for non-self-adjoint operators and its application to stability of Kolmogorov fl ows. ArXiv:1710.05132,2017Google Scholar
  11. 11.
    Kiselev A, Zlatoš A. Quenching of combustion by shear fl ows. Duke Math J, 2006, 132: 49–72MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li T, Wei D, Zhang Z. Pseudospectral bound and transition threshold for the 3D Kolmogorov flow. ArXiv:1801.05645, 2018Google Scholar
  13. 13.
    Li T, Wei D, Zhang Z. Pseudospectral and spectral bounds for the Oseen vortices operator. Ann Sci Éc Norm Supér (4), 2019, in pressGoogle Scholar
  14. 14.
    Lin Z, Xu M. Metastability of Kolmogorov flows and inviscid damping of shear fl ows. Arch Ration Mech Anal, 2019, 231: 1811–1852MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Matthaeus W H, Stribling W T, Martinez D, et al. Decaying, two-dimensional, Navier-Stokes turbulence at very long times. Phys D, 1991, 51: 531–538CrossRefzbMATHGoogle Scholar
  16. 16.
    McWilliams J C. The emergence of isolated coherent vortices in turbulent fl ow. J Fluid Mech, 1984, 146: 21–43CrossRefzbMATHGoogle Scholar
  17. 17.
    McWilliams J C. The vortices of two-dimensional turbulence. J Fluid Mech, 1990, 219: 361–385CrossRefGoogle Scholar
  18. 18.
    Villani C. Hypocoercivity. Mem Amer Math Soc, 2009, 202: 141 pagesMathSciNetzbMATHGoogle Scholar
  19. 19.
    Wei D, Zhang Z, Zhao W. Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. ArX-iv:1711.01822, 2017Google Scholar
  20. 20.
    Yin Z, Montgomery D C, Clercx H J H. Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of “patches” and “points”. Phys Fluids, 2003, 15: 1937–1953MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations