Advertisement

Pseudo-anti commuting Ricci tensor for real hypersurfaces in the complex hyperbolic quadric

  • Young Jin SuhEmail author
Articles
  • 4 Downloads

Abstract

We introduce a new notion of pseudo-anti commuting Ricci tensor for real hypersurfaces in the noncompact complex hyperbolic quadric \(Q^{m*}=SO_{2,m}^0/SO_2SO_m\) and give a complete classification of these hypersurfaces.

Keywords

pseudo-anti commuting Ricci tensor pseudo-Einstein A-isotropic A-principal complex conjugation complex hyperbolic quadric 

MSC(2010)

53C40 53C55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Research Foundation of Korea (Grant No. NRF-2015-R1A2A1A-01002459). The author expresses his deep gratitude to the referees for their wonderful comments throughout all of his manuscript and his thanks to the support of National Research Foundation of Korea.

References

  1. 1.
    Aiyama R, Nakagawa H, Suh Y-J. Semi-Kaehlerian submanifolds in an indefinite complex space form. Kodai Math J, 1988, 11: 325–343MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berndt B, Suh Y-J. Contact hypersurfaces in Kaehler manifold. Proc Amer Math Soc, 2015, 143: 2637–2649MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Besse A-L. Einstein Manifolds. Classics in Mathematics. Berlin: Springer-Verlag, 2008Google Scholar
  4. 4.
    Cecil T-E, Ryan P-J. Focal sets and real hypersurfaces in complex projective space. Trans Amer Math Soc, 1982, 269: 481–499MathSciNetzbMATHGoogle Scholar
  5. 5.
    Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Studies in Mathematics, vol. 34. Providence: Amer Math Soc, 2001zbMATHGoogle Scholar
  6. 6.
    Jeong I, Suh Y-J. Pseudo-anti commuting and Ricci soliton real hypersurfaces in complex two-plane Grassmannians. J Geom Phys, 2014, 86: 258–272MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Klein S. Totally geodesic submanifolds of the complex quadric. Differential Geom Appl, 2008, 26: 79–96MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Klein S. Totally geodesic submanifolds of the complex quadric and the quaternionic 2-Grassmannians. Trans Amer Math Soc, 2009, 361: 4927–4967MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Klein S, Suh Y-J. Contact real hypersurfaces in the complex hyperbolic quadric. ArXiv:1710.10040, 2017Google Scholar
  10. 10.
    Knapp A-W. Lie Groups beyond an Introduction, 2nd ed. Progress in Mathematics, vol. 140. Boston: Birkhäuser, 2002Google Scholar
  11. 11.
    Kobayashi S, Nomizu K. Foundations of Differential Geometry, Volume II. New York: John Wiley & Sons, 1996zbMATHGoogle Scholar
  12. 12.
    Kon M. Pseudo-Einstein real hypersurfaces in complex projective space. J Differential Geom, 1979, 14: 339–354MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Martinez A, Pérez J-D. Real hypersurfaces in quaternionic projective space. Ann Mat Pura Appl (4), 1986, 145: 355–384MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Montiel S, Romero A. On some real hypersurfaces in a complex hyperbolic space. Geom Dedicata, 1986, 20: 245–261MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Morgan J, Tian G. Ricci Flow and Poincaré Conjecture. Clay Mathematics Monographs, vol. 3. Providence: Amer Math Soc, 2007Google Scholar
  16. 16.
    Okumura M. On some real hypersurfaces of a complex projective space. Trans Amer Math Soc, 1975, 212: 355–364MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Perelman G. Ricci flow with surgery on three-manifolds. ArXiv:math/0303109, 2003zbMATHGoogle Scholar
  18. 18.
    Pérez J-D. Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space. Ann Mat Pura Appl (4), 2015, 194: 1781–1794MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pérez J-D, Suh Y-J. Real hypersurfaces of quaternionic projective space satisfying \(\nabla _{U_i } R = 0\). Differential Geom Appl, 1997, 7: 211–217MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pérez J-D, Suh Y-J. The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J Korean Math Soc, 2007, 44: 211–235MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pérez J-D, Suh Y-J, Watanabe Y. Generalized Einstein real hypersurfaces in complex two-plane Grassmannians. J Geom Phys, 2010, 60: 1806–1818MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Reckziegel H. On the geometry of the complex quadric. In: Geometry and Topology of Submanifolds, vol. 8. River Edge: World Scientific, 1996, 302–315Google Scholar
  23. 23.
    Romero A. Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric. Proc Amer Math Soc, 1986, 98: 283–286MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Romero A. On a certain class of complex Einstein hypersurfaces in indefinite complex space forms. Math Z, 1986, 192: 627–635MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Smyth B. Differential geometry of complex hypersurfaces. Ann of Math (2), 1967, 85: 246–266MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Smyth B. Homogeneous complex hypersurfaces. J Math Soc Japan, 1968, 20: 643–647MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Suh Y-J. Real hypersurfaces of type B in complex two-plane Grassmannians. Monatsh Math, 2006, 147: 337–355MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Suh Y-J. Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1309–1324MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Suh Y-J. Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians. Adv Appl Math, 2013, 50: 645–659MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Suh Y-J. Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature. J Math Pures Appl (9), 2013, 100: 16–33MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Suh Y-J. Real hypersurfaces in the complex quadric with Reeb parallel shape operator. Internat J Math, 2014, 25: 1450059MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Suh Y-J. Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv Math, 2015, 281: 886–905MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Suh Y-J. Real hypersurfaces in the complex quadric with harmonic curvature. J Math Pures Appl (9), 2016, 106: 393–410MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Suh Y-J. Pseudo-Einstein real hypersurfaces in complex hyperbolic two-plane Grassmannians. Adv Appl Math, 2016, 76: 39–67MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Suh Y-J. Pseudo-anti commuting Ricci tensor and Ricci soliton real hypersurfaces in the complex quadric. J Math Pures Appl (9), 2017, 107: 429–450MathSciNetCrossRefGoogle Scholar
  36. 36.
    Suh Y-J. Pseudo-Einstein real hypersurfaces in the complex quadric. Math Nachr, 2017, 290: 1884–1904MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Suh Y-J. Real hypersurfaces in the complex hyperbolic quadric with isometric Reeb flow. Commun Contemp Math, 2018, 20: 1750031MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Suh Y-J, Hwang D-H. Real hypersurfaces in the complex hyperbolic quadric with Reeb parallel shape operator. Ann Mat Pura Appl (4), 2017, 196: 1307–1326MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Suh Y-J, Woo C. Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor. Math Nachr, 2014, 287: 1524–1529MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Yano K, Kon M. CR Submanifolds of Kaehlerian and Sasakian Manifolds. Progress in Mathematics, vol. 30. Boston: Birkhäuser, 1983Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics & Research Institute of Real and Complex Manifolds, College of Natural SciencesKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations