Science China Mathematics

, Volume 62, Issue 12, pp 2557–2570 | Cite as

Extremal functions for a singular Hardy-Moser-Trudinger inequality

  • Songbo HouEmail author


In this paper, using the blow-up analysis, we prove a singular Hardy-Morser-Trudinger inequality, and find its extremal functions. Our results extend those of Wang and Ye (2012), Yang and Zhu (2016), Csató and Roy (2015) and Yang and Zhu (2017).


singular Trudinger-Moser inequality extremal function blow-up analysis 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adimurthi, Druet O. Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Comm Partial Differential Equations, 2004, 29: 295–322MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adimurthi, Sandeep K. A singular Moser-Trudinger embedding and its applications. NoDEA Nonlinear Differential Equations Appl, 2007, 13: 585–603MathSciNetCrossRefGoogle Scholar
  3. 3.
    Adimurthi, Struwe M. Global compactness properties of semilinear elliptic equation with critical exponential growth. J Funct Anal, 2000, 175: 125–167MathSciNetCrossRefGoogle Scholar
  4. 4.
    Adimurthi, Yang Y. An interpolation of Hardy inequality and Trudinger-Moser inequality in ℝN and its applications. Int Math Res Not IMRN, 2010, 13: 2394–2426zbMATHGoogle Scholar
  5. 5.
    Baernstein A. A unified approach to symmetrization. In: Partial Differential Equations of Elliptic Type. Symposia Mathematica, vol. 35. Cambridge: Cambridge University Press, 1994, 47–91zbMATHGoogle Scholar
  6. 6.
    Brezis H, Marcus M. Hardy’s inequality revisited. Ann Scuola Norm Sup Pisa Cl Sci (4), 1997, 25: 217–237MathSciNetzbMATHGoogle Scholar
  7. 7.
    Carleson L, Chang A. On the existence of an extremal function for an inequality of J. Moser. Bull Sci Math, 1986, 110: 113–127MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen W, Li C. Classification of solutions of some nonlinear elliptic equations. Duke Math J, 1991, 63: 615–622MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen W, Li C. What kinds of singular surfaces can admit constant curvature? Duke Math J, 1995, 78: 437–451MathSciNetCrossRefGoogle Scholar
  10. 10.
    Csató G, Roy P. Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions. Calc Var Partial Differential Equations, 2015, 54: 2341–2366MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ding W, Jost J, Li J, et al. The differential equation −Δu = 8π − 8πhe u on a compact Riemann Surface. Asian J Math, 1997, 1: 230–248MathSciNetCrossRefGoogle Scholar
  12. 12.
    Flucher M. Extremal functions for Trudinger-Moser inequality in 2 dimensions. Comment Math Helv, 1992, 67: 471–497MathSciNetCrossRefGoogle Scholar
  13. 13.
    Iula S, Mancini G. Extremal functions for singular Moser-Trudinger embeddings. Nonlinear Anal, 2017, 156: 215–248MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li X, Yang Y. Extremal functions for singular Trudinger-Moser inequalities in the entire Euclidean space. J Differential Equations, 2018, 264: 4901–4943MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li Y. Moser-Trudinger inequality on compact Riemannian manifolds of dimension two. J Partial Differential Equations, 2001, 14: 163–192MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lin K. Extremal functions for Moser’s inequality. Trans Amer Math Soc, 1996, 348: 2663–2671MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mancini G, Sandeep K. On a semilinear elliptic equation in ℍn. Ann Sc Norm Super Pisa Cl Sci (5), 2008, 7: 635–671MathSciNetzbMATHGoogle Scholar
  18. 18.
    Moser J. A sharp form of an inequality by N. Trudinger. Indiana Univ Math J, 1971, 20: 1077–1091MathSciNetCrossRefGoogle Scholar
  19. 19.
    Struwe M. Critical points of embeddings of H 01,n into Orlicz spaces. Ann Inst H Poincaré Anal Non Linéaire, 1988, 5: 425–464MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tintarev C. Trudinger-Moser inequality with remainder terms. J Funct Anal, 2014, 266: 55–66MathSciNetCrossRefGoogle Scholar
  21. 21.
    Trudinger N. On embeddings into Orlicz spaces and some applications. J Math Mech, 1967, 17: 473–484MathSciNetzbMATHGoogle Scholar
  22. 22.
    Wang G, Ye D. A Hardy-Moser-Trudinger inequality. Adv Math, 2012, 230: 294–320MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yang Y. A sharp form of Moser-Trudinger inequality in high dimension. J Funct Anal, 2006, 239: 100–126MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yang Y. A sharp form of trace Moser-Trudinger inequality on compact Riemannian surface with boundary. Trans Amer Math Soc, 2007, 359: 5761–5776MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yang Y. Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two. J Differential Equations, 2015, 258: 3161–3193MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yang Y, Zhu X. An improved Hardy-Trudinger-Moser inequality. Ann Global Anal Geom, 2016, 49: 1–19MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yang Y, Zhu X. Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two. J Funct Anal, 2017, 272: 3347–3374MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yuan A, Zhu X. An improved singular Trudinger-Moser inequality in unit ball. J Math Anal Appl, 2016, 435: 244–252MathSciNetCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics, College of ScienceChina Agricultural UniversityBeijingChina

Personalised recommendations