Science China Mathematics

, Volume 61, Issue 10, pp 1825–1832 | Cite as

Complete Ricci solitons on Finsler manifolds

  • Behroz BidabadEmail author
  • Mohamad Yar Ahmadi


The geometric flow theory and its applications turned into one of the most intensively developing branches of modern geometry. Here, a brief introduction to Finslerian Ricci flow and their self-similar solutions known as Ricci solitons are given and some recent results are presented. They are a generalization of Einstein metrics and are previously developed by the present authors for Finsler manifolds. In the present work, it is shown that a complete shrinking Ricci soliton Finsler manifold has a finite fundamental group.


quasi-Einstein shrinking Finsler metric Ricci soliton Ricci flow 


53C60 53C44 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The second author thanks School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran for the support.


  1. 1.
    Akbar-Zadeh H. Sur les espaces de Finsler a courbures sectionnelles constantes. Acad Roy Belg Bull Cl Sci (6), 1988, 74: 199–202MathSciNetzbMATHGoogle Scholar
  2. 2.
    Akbar-Zadeh H. Initiation to Global Finslerian Geometry. Netherlands: Elsevier Science, 2006zbMATHGoogle Scholar
  3. 3.
    Bao D. On two curvature-driven problems in Riemann-Finsler geometry. Adv Stud Pure Math, 2007, 48: 19–71MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bao D, Chern S S, Shen Z. An Introduction to Riemann-Finsler Geometry. New York: Springer, 2000CrossRefzbMATHGoogle Scholar
  5. 5.
    Bidabad B, Joharinad P. Conformal vector fields on complete Finsler spaces of constant Ricci curvature. Differential Geom Appl, 2014, 33: 75–84MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bidabad B, Sedaghat M K. Ricciow on Finsler surfaces. J Geom Phys, 2018, 129: 238–254MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bidabad B, Shahi A, Yar Ahmadi M. Deformation of Cartan curvature on Finsler manifolds. Bull Korean Math Soc, 2017, 54: 2119–2139MathSciNetGoogle Scholar
  8. 8.
    Bidabad B, Yar Ahmadi M. On quasi-Einstein Finsler spaces. Bull Iranian Math Soc, 2014, 40: 921–930MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bidabad B, Yar Ahmadi M. On complete Yamabe solitons. Adv Geom, 2018, 1: 101–104MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Derdzinski A. A Myers-type theorem and compact Ricci solitons. Proc Amer Math Soc, 2006, 134: 3645–3648MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hamilton R S. Three-manifolds with positive Ricci curvature. J Differential Geom, 1982, 17: 255–306MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hamilton R S. The Ricciow on surfaces. Contemp Math, 1988, 71: 237–361CrossRefGoogle Scholar
  13. 13.
    López M F, Ro E G. A remark on compact Ricci solitons. Math Ann, 2008, 340: 893–896MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lott J. Some geometric properties of the Bakry-Emery-Ricci solitons. Comment Math Helv, 2003, 78: 865–883MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wylie W. Complete shrinking Ricci solitons have finite fundamental group. Proc Amer Math Soc, 2008, 136: 1803–1806MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Yar Ahmadi M, Bidabad B. On compact Ricci solitons in Finsler geometry. C R Acad Sci Paris Ser I, 2015, 353: 1023–1027MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yar Ahmadi M, Bidabad B. Convergence of Finslerian metrics under Ricciow. Sci China Math. 2016, 59: 741–750MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceAmirkabir University of TechnologyTehranIran

Personalised recommendations