Advertisement

The diagram category of framed tangles and invariants of quantized symplectic group

  • Zhankui XiaoEmail author
  • Yuping Yang
  • Yinhuo Zhang
Articles
  • 3 Downloads

Abstract

In this paper, we present a categorical version of the first and second fundamental theorems of the invariant theory for the quantized symplectic groups. Our methods depend on the theory of braided strict monoidal categories which are pivotal, more explicitly, the diagram category of framed tangles.

Keywords

diagram category of framed tangles invariant theory quantized symplectic group Birman-Murakami-Wenzl algebra 

MSC(2010)

17B37 18D10 20G05 16T30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The first author was supported by the National Natural Science Foundation of China (Grant No. 11301195), China Scholarship Council and a research foundation of Huaqiao University (Grant No. 2014KJTD14). The work was done while the first author was visiting the University of Hasselt and he is very grateful for its hospitality. The authors thank the referees for their valuable comments and suggestions.

References

  1. 1.
    Birman, J, Wenzl, H. Braids, link polynomials and a new algebra. Trans Amer Math Soc, 1989, 313: 249–273MathSciNetzbMATHGoogle Scholar
  2. 2.
    Brauer, R. On algebras which are connected with semisimple continuous groups. Ann Math, 1937, 38: 857–872MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chari, V, Pressley, A. A guide to quantum groups. Cambridge: Cambridge University Press, 1994zbMATHGoogle Scholar
  4. 4.
    Dipper, R, Doty, S, Hu, J. Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc, 2008, 360: 189–213MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dipper, R, Hu, J, Stoll, F. Symmetrizers and antisymmetrizers for the BMW algebra. J Algebra Appl, 2013, 12: no.1350032, 22ppMathSciNetzbMATHGoogle Scholar
  6. 6.
    Doty, S, Hu, J. Schur-Weyl duality for orthogonal groups. Proc London Math Soc, 2009, 98: 679–713MathSciNetzbMATHGoogle Scholar
  7. 7.
    Drinfel’d, V G. Quantum groups. In: Proceedings of the ICM (Berkeley, California, 1986). Providence: Amer Math Soc, 1987, 798–820Google Scholar
  8. 8.
    Du, J, Parshall, B, Scott, L. Quantum Weyl reciprocity and tilting modules. Comm Math Phys, 1998, 195: 321–352MathSciNetzbMATHGoogle Scholar
  9. 9.
    Etingof, P, Gelaki, S, Nikshych, D, et al. Tensor Categories. Mathematical Surveys and Monographs, vol. 205. Providence: Amer Math Soc, 2015zbMATHGoogle Scholar
  10. 10.
    Freyd, P, Yetter, D. Braided compact closed categories with applications to low-dimensional topology. Adv Math, 1989, 77: 156–182MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hayashi, T. Quantum deformation of classical groups. Publ RIMS Kyoto Uni, 1992, 28: 57–81MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hu, J. BMW algebra, quantized coordinate algebra and type C Schur-Weyl duality. Represent Theory, 2011, 15: 1–62MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hu, J, Xiao, Z. On tensor spaces for Birman-Murakami-Wenzl algebras. J Algebra, 2010, 324: 2893–2922MathSciNetzbMATHGoogle Scholar
  14. 14.
    Jimbo, M. A q-analogue of U(gl(N + 1)), Hecke algebra and the Yang-Baxter equation. Lett Math Phys, 1986, 11: 247–252MathSciNetzbMATHGoogle Scholar
  15. 15.
    Jones, V F R. Hecke algebra representations of braid groups and link polynomials. Ann Math, 1987, 126: 335–388MathSciNetzbMATHGoogle Scholar
  16. 16.
    Joyal, A, Street, R. Braided tensor categories. Adv Math, 1993, 102: 20–78MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kauffman, L H. An invariant of regular isotopy. Trans Amer Math Soc, 1990, 318: 417–471MathSciNetzbMATHGoogle Scholar
  18. 18.
    Leduc, R, Ram, A. A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: The Brauer, Birman-Wenzl, and type A Iwahori-Hecke algebras. Adv Math, 1997, 125: 1–94MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lehrer, G I, Zhang, H C, Zhang, R B. A quantum analogue of the first fundamental theorem of invariant theory. Comm Math Phys, 2011, 301: 131–174MathSciNetzbMATHGoogle Scholar
  20. 20.
    Lehrer, G I, Zhang, R B. The second fundamental theorem of invariant theory for the orthogonal group. Ann Math, 2012, 176: 2031–2054MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lehrer, G I, Zhang, R B. The Brauer category and invariant theory. J Euro Math Soc, 2015, 17: 2311–2351MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lusztig, G. Introduction to Quantum Group. Progress in Mathematics, vol. 110. Boston: Birkhäuser, 1993Google Scholar
  23. 23.
    Matsumoto, H. Générateurs et relations des groupes de Weyl généralisés. C R Acad Sci Paris, 1964, 258: 3419–3422MathSciNetzbMATHGoogle Scholar
  24. 24.
    Murakami, J. The Kauffman polynomial of links and representation theory. Osaka J Math, 1987, 26: 745–758MathSciNetzbMATHGoogle Scholar
  25. 25.
    Reshetikhin, N Y, Turaev, V G. Ribbon graphs and their invariants derived from quantum groups. Comm Math Phys, 1990, 127: 1–26MathSciNetzbMATHGoogle Scholar
  26. 26.
    Rubey, M, Westbury, B W. A combinatorial approach to classical representation theory. ArXiv:1408.3592v3, 2015Google Scholar
  27. 27.
    Turaev, V G. Quantum Invariants of Knots and 3-Manifolds. de Gruyter Studies in Mathematics, vol. 18. Berlin: Walter de Gruyter, 1994Google Scholar
  28. 28.
    Weyl, H. The Classical Groups, Their Invariants and Representations. Princeton: Princeton University Press, 1940zbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesHuaqiao UniversityQuanzhouChina
  2. 2.Department of Mathematics & StatisticsUniversity of Hasselt, Universitaire CampusDiepeenbeekBelgium

Personalised recommendations