Advertisement

Hexahedral constraint-free finite element method on meshes with hanging nodes

  • Xuying ZhaoEmail author
  • Zhong-Ci Shi
Articles
  • 8 Downloads

Abstract

Nonconforming grids with hanging nodes are frequently used in adaptive finite element computations. In all earlier works on such methods, proper constraints should be enforced on degrees of freedom on edges/faces with hanging nodes to keep continuity, which yield numerical computations much complicated. In 2014, Zhao et al. (2014) presented quadrilateral constraint-free finite element methods on quadrilateral grids with hanging nodes. This paper further develops a hexahedral constraint-free finite element method on hexahedral grids with hanging nodes, which is of greater challenge than the two-dimensional case. Residual-based a posteriori error reliability and efficiency are also established in this paper.

Keywords

adaptive finite element a posteriori error estimate hexahedral nonconforming element hanging node 

MSC(2010)

65N30 65N15 35J25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainsworth M. Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J Numer Anal, 2005, 42: 2320–2341MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ainsworth M, Demkowicz L, Kim C W. Analysis of the equilibrated residual method for a posteriori error estimation on meshes with hanging nodes. Comput Methods Appl Mech Engrg, 2007, 196: 3493–3507MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. New York: John Wiley Sons, 2000Google Scholar
  4. 4.
    Arnold D N, Mukherjee A, Pouly L. Locally adapted tetrahedral meshes using bisection. SIAM J Sci Comput, 2000, 22: 431–448MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Babuska I, Rheinboldt W C. Error estimates for adaptive finite element computations. SIAM J Numer Anal, 1978, 15: 736–754MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bank R E, Sherman A H, Weiser A. Refinement algorithms and data structures for regular local mesh refinement. In: Scientific Computing. Applications of Mathematics and Computing to the Physical Sciences. Amsterdam: North-Holland, 1983, 3–17Google Scholar
  7. 7.
    Bänsch E. Local mesh refinement in 2 and 3 dimensions. Impact Comput Sci Engrg, 1991, 3: 181–191MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Carstensen C, Bartels S, Jansche S. A posteriori error estimates for nonconforming finite element methods. Numer Math, 2002, 92: 233–256MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carstensen C, Hu J. A unifying theory of a posteriori error control for nonconforming finite element methods. Numer Math, 2007, 107: 473–502MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Choi C K, Park Y M. Nonconforming transition plate bending elements with variable mid-side nodes. Comput Struct, 1989, 32: 295–304CrossRefzbMATHGoogle Scholar
  11. 11.
    Dari E, Duran R, Padra C, et al. A posteriori error estimators for nonconforming finite element methods. M2AN Math Model Numer Anal, 1996, 30: 385–400MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Heuveline V, Schieweck F. H 1-interpolation on quadrilateral and hexahedral meshes with hanging nodes. Computing, 2007, 80: 203–220MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huang F, Xie X. A modified nonconforming 5-node quadrilateral transition finite element. Adv Appl Math Mech, 2010, 2: 784–797MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kossaczký I. A recursive approach to local mesh refinement in two and three dimensions. J Comput Appl Math, 1994, 55: 275–288MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Leitner E, Selberherr S. Three-dimensional grid adaptation using a mixed-element decomposition method. In: Simulation of Semiconductor Devices and Processes, vol. 6. Vienna: Springer, 1995, 464–467CrossRefGoogle Scholar
  16. 16.
    Maubach J. Local bisection refinement for n-simplicial grids generated by reflection. SIAM J Sci Comput, 1995, 16: 210–227MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mitchell W F. Adaptive refinement for arbitrary finite element spaces with hierarchical basis. J Comput Appl Math, 1991, 36: 65–78MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Molino N, Bridson R, Teran J, et al. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: 12th International Meshing Roundtable. Livermore: Sandia National Laboratories, 2003, 103–114Google Scholar
  19. 19.
    Plaza A, Carey G F. Local refinement of simplicial grids based on the skeleton. Appl Numer Math, 2000, 32: 195–218MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rivara M C. Mesh refinement processes based on the generalized bisection of simplices. SIAM J Numer Anal, 1984, 21: 604–613MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rivara M C, Iribarren G. The 4-triangles longest-side partition of triangles and linear refinement algorithms. Math Comp, 1996, 65: 1485–1501MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rosenberg I G, Stenger F. A lower bound on the angles of triangles constructed by biseciting the longest side. Math Comp, 1975, 29: 390–395MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Verfürth R. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Chichester: Wiley-Teubner, 1996zbMATHGoogle Scholar
  24. 24.
    Zhao X Y. Red-green-type refinements, nonconforming elements, quadrilateral hanging-node-free and constraint-free adaptive methods (in Chinese). PhD Thesis. Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 2010Google Scholar
  25. 25.
    Zhao X Y, Mao S P, Shi Z C. Adaptive quadrilateral and hexahedral finite element methods with hanging nodes and convergence analysis. J Comput Math, 2010, 28: 621–644MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zhao X Y, Mao S P, Shi Z C. Adaptive finite element methods on quadrilateral meshes without hanging nodes. SIAM J Sci Comput, 2010, 32: 2099–2120MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhao X Y, Shi Z C, Du Q. Constraint-free adaptive FEMs on quadrilateral nonconforming meshes. J Sci Comput, 2014, 59: 53–79MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, NCMIS, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations