Science China Mathematics

, Volume 62, Issue 3, pp 469–508 | Cite as

Existence and blow-up of the solutions to the viscous quantum magnetohydrodynamic nematic liquid crystal model

  • Guangwu WangEmail author
  • Boling Guo


In this paper, we investigate the coupled viscous quantum magnetohydrodynamic equations and nematic liquid crystal equations which describe the motion of the nematic liquid crystals under the magnetic field and the quantum effects in the two-dimensional case. We prove the existence of the global finite energy weak solutions by use of a singular pressure close to vacuum. Then we obtain the local-in-time existence of the smooth solution. In the final, the blow-up of the smooth solutions is studied. The main techniques are Faedo-Galerkin method, compactness theory, Arzela-Ascoli theorem and construction of the functional differential inequality.


viscous quantum magnetohydrodynamic equations nematic liquid crystal global weak solution singular pressure smooth solution blow-up 


35A01 35B44 35D30 35M11 35Q40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Foundation of Guangzhou University (Grant No. 2700050357) and National Natural Science Foundation of China (Grant No. 11731014).


  1. 1.
    Antonelli P, Marcati P. The quantum hydrodynamics system in two space dimensions. Arch Ration Mech Anal, 2012, 203: 499–527MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antonelli P, Spirito S. On the compactness of finite energy weak solutions to the quantum Navier-Stokes equations. ArXiv:1512.07496v2, 2015zbMATHGoogle Scholar
  3. 3.
    Wang G W et al. Sci China Math Antonelli P, Spirito S. Global existence of finite energy weak solutions of quantum Navier-Stokes equations. Arch Ration Mech Anal, 2017, 225: 1161–1199Google Scholar
  4. 4.
    Bresch D, Desjardins B. On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J Math Pures Appl (9), 2007, 87: 57–90MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bresch D, Desjardins B, Lin C K. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm Partial Differential Equations, 2003, 28: 843–868MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cavaterra C, Rocca E, Wu H. Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows. J Differential Equations, 2013, 255: 24–57MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ding S-J, Lin J, Wang C-Y, et al. Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete Contin Dyn Syst Ser B, 2011, 15: 357–371MathSciNetGoogle Scholar
  8. 8.
    Dong J. A note on barotropic compressible quantum Navier-Stokes equations. Nonlinear Anal, 2010, 73: 854–856MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Evens L-C. Partial Differential Equations. Providence: Amer Math Soc, 1998Google Scholar
  10. 10.
    Feireisl E. Dynamics of Viscous Compressible Fluid. Oxford Lecture Series in Mathematics and Its Applications, vol. 26. New York: Oxford University Press, 2004Google Scholar
  11. 11.
    Feireisl E, Novotný A, Petzeltová H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3: 358–392MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fradkin E, Kivelson S A. Liquid-crystal phases of quantum Hall systems. Phys Rev B, 1999, 59: 8065–8072CrossRefGoogle Scholar
  13. 13.
    Fregoso B-M. Quantum liquid crystal phases and unconventional magnetism in electronic and atomic Fermi systems. PhD Dissertation. Urbana-Champaign: University of Illinois at Urbana-Champaign, 2010Google Scholar
  14. 14.
    Gasser I, Markowich P. Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptot Anal, 1997, 14: 97–116MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gisclon M, Lacroix-Violet I. About the barotropic compressible quantum Navier-Stokes equations. Nonlinear Anal, 2015, 128: 106–121MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Guo B, Wang G. Blow-up of solutions to quantum hydrodynamic models in half space. J Math Phys, 2017, 58: 031505MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guo B-L, Wang G-W. Blow-up of the smooth solution to quantum hydrodynamic models in ℝd. J Differential Equations, 2016, 162: 3815–3842MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Haas F. A magnetohydrodynamic model for quantum plasmas. Phys Plasmas, 2005, 12: 062117CrossRefGoogle Scholar
  19. 19.
    Hoff D. Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303: 169–181MathSciNetzbMATHGoogle Scholar
  20. 20.
    Hoff D. Strong convergence to global solutions for multidimensional flows of compressible: Viscous fluid with polytropic equations of state and discontinuous initial data. Arch Ration Mech Anal, 1995, 132: 1–14MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hoff D. Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids. Arch Ration Mech Anal, 1997, 139: 303–354MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hoff D. Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data. J Differential Equations, 2013, 120: 215–254MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hong M C, Li J, Xin Z. Blow-up criteria of strong solutions to the Ericksen-Leslie system in ℝd. Comm Partial Differential Equations, 2014, 39: 1284–1328MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hu X, Wu H. Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J Math Anal, 2013, 45: 2678–2699MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Huang T, Wang C, Wen H. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204: 285–311MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Huang X, Li J, Xin Z. Global well-posedness of classical solutions with large oscillations and vacuum to the threedimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65: 549–585MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Huang X-D, Wang C-Y, Wen H-Y. Strong solutions of the compressible nematic liquid crystal flow. J Differential Equations, 2012, 252: 222–2265MathSciNetzbMATHGoogle Scholar
  28. 28.
    Jiang F. A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations. Nonlinear Anal, 2011, 12: 1733–1735MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jiang F, Jiang S, Wang D. On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J Funct Anal, 2013, 265: 3369–3397MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jiang F, Jiang S, Wang D. Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch Ration Mech Anal, 2014, 214: 403–451MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Jiingel A. Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J Math Anal, 2010, 42: 1025–1045MathSciNetCrossRefGoogle Scholar
  32. 32.
    Kazhikhov A V, Shelukhin V V. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41: 273–282MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lei Z, Li D, Zhang X-Y. Remarks of global well-posedness of liquid crystal flows and heat flow of harmonic maps in two dimensions. Proc Amer Math Soc, 2012, 142: 3801–3810CrossRefzbMATHGoogle Scholar
  34. 34.
    Li H, Marcati P. Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semicon ductors. Comm Math Phys, 2004, 245: 215–247MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Li J, Xin Z-P. Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities. ArXiv:1504.06826v2, 2015Google Scholar
  36. 36.
    Li J, Xu Z, Zhang J. Global well-posedness with large oscillations and vacuum to the three dimensional equations of compressible nematic liquid crystal flows. ArXiv:1204.4966, 2012Google Scholar
  37. 37.
    Lions P-L. Mathematical Topics in Fluid Mechanics. Oxford Lecture Series in Mathematics and Its Applications, vol. 10. New York: Oxford University Press, 1998Google Scholar
  38. 38.
    Matsumura A, Nishida T. The initial value problem for t h e equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67–104MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Mellet A, Vasseur A. On the barotropic compressible Navier-Stokes equations. Comm Partial Differential Equations, 2007, 32: 431–452MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Mucha P-B, Pokorný M, Zatorska E. Chemically reacting mixtures in terms of degenerated parabolic setting. J Math Phys, 2013, 54: 071501MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Nirenberg L. On elliptic partial differential equations. Ann Sc Norm Super Pisa Cl Sci (5), 1959, 13: 115–162MathSciNetzbMATHGoogle Scholar
  42. 42.
    Nosanow L-H, Parish L-J, Pinski F-J. Zero-temperature properties of matter and t h e quantum theorem of corresponding states: The liquid-to-crystal phase transition for Fermi and Bose systems. Phys Rev B, 1975, 11: 191–204CrossRefGoogle Scholar
  43. 43.
    Novotny A, Straskraba I. Introduction to the Mathematical Theory of Compressible Flow. Oxford: Oxford University Press, 2004Google Scholar
  44. 44.
    Radzihovsky L. Quantum liquid-crystal order in resonant atomic gases. Phys C, 2012, 481: 189–206CrossRefGoogle Scholar
  45. 45.
    Sideris T C. Formation of singularities in solutions to nonlinear hyperbolic equations. Arch Ration Mech Anal, 1984, 86: 369–381MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Simon J. Compact sets in the space L p([0,T]; B). Ann Mat Pura Appl (4), 1987, 146: 65–96MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Suen A, Hoff D. Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics. Arch Ration Mech Anal, 2012, 205: 27–58MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Vasseur A F, Yu C. Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent Math, 2016, 206: 935–974MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Wang G-W, Guo B-L. Blow up of t h e smooth solution to the compressible nematic liquid crystal system. Acta Appl Math, 2018, doi:10.1007/s10440-018-0160-7Google Scholar
  50. 50.
    Wu G-C, Tan Z. Global low-energy weak solution and large-time behavior for t h e compressible flow of liquid crystals. J Differential Equations, 2018, in pressGoogle Scholar
  51. 51.
    Wu Z-Q, Yin J-X, Wang C-P. Elliptic and Parabolic Equations. Singapore: World Scientific, 2006Google Scholar
  52. 52.
    Yang J, Ju Q. Global existence of t h e three-dimensional viscous quantum magnetohydrodynamic model. J Math Phys, 2014, 55: 081501MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Yang K. Quantum liquid crystal phases in fermionic superfluid with pairing between fermion species of unequal densities. Internat J Modern Phys B, 2013, 27: 1362001MathSciNetCrossRefGoogle Scholar
  54. 54.
    Zatorska E. On the flow of chemically reacting gaseous mixture. J Differential Equations, 2012, 253: 3471–3500MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Zatorska E. Fundamental problems to equations of compressible chemically reacting flows., 2013Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceGuangzhou UniversityGuangzhouChina
  2. 2.Graduate School of China Academy of Engineering PhysicsBeijingChina
  3. 3.Institute of Applied Physics and Computational MathematicsChina Academy of Engineering PhysicsBeijingChina

Personalised recommendations