Science China Mathematics

, Volume 60, Issue 12, pp 2421–2428 | Cite as

On Galvin’s theorem for compact Hausdorff right-topological semigroups with dense topological centers

  • XiongPing DaiEmail author
  • HaiLan Liang


We generalize an important theorem of Fred Galvin from the Stone-Čech compactification βT of any discrete semigroup T to any compact Hausdorff right-topological semigroup with a dense topological center; and then apply it to Ellis’ semigroups to prove that a point is distal if and only if it is IP*-recurrent, for any semiflow (T;X) with arbitrary compact Hausdorff phase space X not necessarily metrizable and with arbitrary phase semigroup T not necessarily cancelable.


Galvin’s theorem transformation semigroup Ellis’ semigroup distal point 


37B05 20M30 54H15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auslander J. Minimal Flows and Their Extensions. Amsterdam: North-Holland, 1988zbMATHGoogle Scholar
  2. 2.
    Auslander J, Furstenberg H. Product recurrence and distal points. Trans Amer Math Soc, 1994, 343: 221–232MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bergelson V, Hindman N. Nonmetrizable topological dynamics and Ramsey theory. Trans Amer Math Soc, 1990, 320: 293–320MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bergelson V, Hindman N. Some topological semicommutative van der Waerden type theorems and their combinatorial consequences. J Lond Math Soc (2), 1992, 45: 385–403MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dai X, Tang X. Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics. J Differential Equations, 2017, 263: 5521–5553MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ellis D, Ellis R, Nerurkar M. The topological dynamics of semigroup actions. Trans Amer Math Soc, 2001, 353: 1279–1320MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ellis R. Distal transformation groups. Pacific J Math, 1958, 8: 401–405MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Furstenberg H. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton: Princeton University Press, 1981CrossRefzbMATHGoogle Scholar
  9. 9.
    Gottschalk W H, Hedlund G A. Topological Dynamics. Providence: Amer Math Soc, 1955CrossRefzbMATHGoogle Scholar
  10. 10.
    Hindman N. The existence of certain ultrafilters on N and a conjecture of Graham and Rothschild. Proc Amer Math Soc, 1972, 36: 341–346MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hindman N. Finite sums from sequences within cells of a partition of N. J Combin Theory Ser A, 1974, 17: 1–11MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hindman N. Ultrafilters and combinatorial number theory. In: Number Theory Carbondale. Lecture Notes in Mathematics, vol. 751. Berlin-Heidelberg: Springer, 1979, 119–184Google Scholar
  13. 13.
    Hindman N. Partitions and sums and products of integers. Trans Amer Math Soc, 1979, 247: 227–245MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hindman N, Strauss D. Algebra in the Stone-Čech Compactification: Theory and Applications. Berlin: Walter de Gruyter, 1998CrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsNanjing UniversityNanjingChina
  2. 2.Department of MathematicsFuzhou UniversityFuzhouChina

Personalised recommendations