Quantum Algorithm Design: Techniques and Applications
Abstract
In recent years, rapid developments of quantum computer are witnessed in both the hardware and the algorithm domains, making it necessary to have an updated review of some major techniques and applications in quantum algorithm design.
In this survey as well as tutorial article, the authors first present an overview of the development of quantum algorithms, then investigate five important techniques: Quantum phase estimation, linear combination of unitaries, quantum linear solver, Grover search, and quantum walk, together with their applications in quantum state preparation, quantum machine learning, and quantum search. In the end, the authors collect some open problems influencing the development of future quantum algorithms.
Keywords
Quantum algorithm quantum computation quantum machine learning quantum search quantum walkPreview
Unable to display preview. Download preview PDF.
References
- [1]Benioff P, The computer as a physical system, Journal of Statistical Physics, 1980, 22: 563–591.MathSciNetzbMATHCrossRefGoogle Scholar
- [2]Feynman R, Simulating physics with computers, International Journal of Theoretical Physics, 1982, 21: 467–488.MathSciNetCrossRefGoogle Scholar
- [3]Deutsch D, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. A, 1985, 400: 97–117.MathSciNetzbMATHCrossRefGoogle Scholar
- [4]Deutsch D, Quantum computational networks, Proc. R. Soc. A, 1989, 425: 73–90.MathSciNetzbMATHCrossRefGoogle Scholar
- [5]Yao A C-C, Quantum circuit complexity, Proc. FOCS 1993, IEEE, Palo Alto, 1993, 352–361.Google Scholar
- [6]Bernstein E and Vazirani U V, Quantum complexity theory, SIAM J. Comput., 1997, 26(5): 1411–1473.MathSciNetzbMATHCrossRefGoogle Scholar
- [7]Deutsch D and Jozsa R, Rapid solution of problems by quantum computation, Proc. R. Soc. A, 1992, 439: 553–558.MathSciNetzbMATHCrossRefGoogle Scholar
- [8]Simon D R, On the power of quantum computation, SIAM J. Comput., 1997, 26(5): 1474–1483.MathSciNetzbMATHCrossRefGoogle Scholar
- [9]Shor P W, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput., 1997, 26(5): 1484–1509.MathSciNetzbMATHCrossRefGoogle Scholar
- [10]Kitaev A Y, Quantum measurements and the abelian stabilizer problem, arXiv: quant-ph /9511026.Google Scholar
- [11]Ettinger M, Høyer P, and Knill E, The quantum query complexity of the hidden subgroup problem is polynomial, Information Processing Letters, 2004, 91(1): 43–48.MathSciNetzbMATHCrossRefGoogle Scholar
- [12]Nielsen M A and Chuang I L, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.zbMATHGoogle Scholar
- [13]Hallgren S, Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem, Proc. STOC 2002, ACM Press, New York, 2002, 653–658.Google Scholar
- [14]Proos J and Zalka C, Shor’s discrete logarithm quantum algorithm for elliptic curves, Quantum Information and Computation, 2003, 3: 317–344.MathSciNetzbMATHGoogle Scholar
- [15]Bacon D, Childs A M, and van Dam W, From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups, Proc. FOCS 2005, IEEE, Washington, 2005, 469–478.Google Scholar
- [16]Chi D P, Kim J S, and Lee S, Notes on the hidden subgroup problem on some semi-direct product groups, Phys. Lett. A, 2006, 359(2): 114–116.zbMATHCrossRefGoogle Scholar
- [17]Inui Y and Le Gall G, Efficient quantum algorithms for the hidden subgroup problem over a class of semi-direct product groups, Quantum Information and Computation, 2007, 7(5 & 6): 559–570.MathSciNetzbMATHGoogle Scholar
- [18]Kuperberg G, A subexponential-time quantum algorithm for the dihedral hidden subgroup problem, SIAM J. Comput., 2005, 35(1): 170–188.MathSciNetzbMATHCrossRefGoogle Scholar
- [19]Moore C, Rockmore D, Russell A, et al., The power of basis selection in Fourier sampling: The hidden subgroup problem in affine groups, Proc. SODA 2004, SIAM, Philadelphia, 2004, 1113–1122.Google Scholar
- [20]Gavinsky D, Quantum solution to the hidden subgroup problem for poly-near-Hamiltoniangroups, Quantum Information and Computation, 2004, 4: 229–235.MathSciNetzbMATHGoogle Scholar
- [21]Hallgren S, Russell A, and Ta-Shma A, Normal subgroup reconstruction and quantum computation using group representations, SIAM J. Comput., 2003, 32(4): 916–934.MathSciNetzbMATHCrossRefGoogle Scholar
- [22]Ivanyos G, Magniez F, and Santha M, Efficient quantum algorithms for some instances of the non-abelian hidden subgroup problem, SPAA 2001, ACM Press, New York, 2001, 263–270.Google Scholar
- [23]Grigni M, Schulman L, Vazirani M, et al., Quantum mechanical algorithms for the nonabelian hidden subgroup problem, Combinatorica, 2004, 24: 137–154.MathSciNetzbMATHCrossRefGoogle Scholar
- [24]van Dam W, Hallgren S, and Ip L, Quantum algorithms for some hidden shift problems, SIAM J. Comput., 2006, 36(3): 763–778.MathSciNetzbMATHCrossRefGoogle Scholar
- [25]Boneh D and Lipton R J, Algorithms for black-box fields and their application to cryptography, Advances in Cryptology — CRYPTO’96, Ed. by Koblitz N, LNCS 1109, 1996, 283–297.Google Scholar
- [26]Kuwakado H and Morii M, Quantum distinguisher between the 3-round Feistel cipher and the random permutation, Proc. ISIT 2010, IEEE, Austin, TX, 2010, 2682–2685.Google Scholar
- [27]Kuwakado H and Morii M, Security on the quantum-type Even-Mansour cipher, Proc. ISITA 2012, IEEE, Honolulu, HI, 2012, 312–316.Google Scholar
- [28]Santoli T and Schaffner C, Using Simon’s algorithm to attack symmetric-key cryptographic primitives, arXiv: 1603.07856 [quant-ph].Google Scholar
- [29]Kaplan M, Leurent G, and Leverrier A, Breaking symmetric cryptosystems using quantum period finding, arXiv: 1602.05973v3 [quant-ph].Google Scholar
- [30]Ajtai M and Dwork C, A public-key cryptosystem with worst-case/average-case equivalence, Proc. STOC 1997, ACM Press, New York, 1997, 284–293.Google Scholar
- [31]Regev O, New lattice-based cryptographic constructions, Journal of the ACM, 2004, 51(6): 899–942.MathSciNetzbMATHCrossRefGoogle Scholar
- [32]Regev O, Quantum computation and lattice problems, SIAM J. Comput., 2004, 33(3): 738–760.MathSciNetzbMATHCrossRefGoogle Scholar
- [33]Galbraith S and Stolbunov A, Improved algorithm for the isogeny problem for ordinary elliptic curves, Applicable Algebra in Engineering, Communication and Computing, 2013, 24(2): 107–131.MathSciNetzbMATHGoogle Scholar
- [34]Couveignes J M, Hard Homogeneous Spaces, https://eprint.iacr.org/2006/291.pdf.Google Scholar
- [35]Rostovtsev A and Stolbunov A, Public-key cryptosystem based on isogenies, https://eprint.iacr.org/2006/145.pdf.Google Scholar
- [36]Stolbunov A, Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves, Adv. Math. Commun., 2010, 4(2): 215–235.MathSciNetzbMATHCrossRefGoogle Scholar
- [37]Childs A M, Jao D, and Soukharev V, Constructing elliptic curve isogenies in quantum subexponential time, J. Mathematical Cryptology, 2014, 8: 1–29.MathSciNetzbMATHCrossRefGoogle Scholar
- [38]Grover L K, A fast quantum mechanical algorithm for database search, Proc. STOC 1996, ACM Press, New York, 1996, 212–219.Google Scholar
- [39]Bennett C H, Bernstein E, Brassard G, et al., Strengths and weaknesses of quantum computing, SIAM J. Comput., 1997, 26(5): 1510–1523.MathSciNetzbMATHCrossRefGoogle Scholar
- [40]Zalka C, Grover’s quantum searching algorithm is optimal, Phy. Rev. A, 1999, 60: 2746–2751.CrossRefGoogle Scholar
- [41]Long G L, Grover algorithm with zero theoretical rate, Phys. Lett. A, 2001, 64: 022307.Google Scholar
- [42]Ambainis A, Quantum search algorithms, SIGACT News, 2004, 35(2): 22–35.CrossRefGoogle Scholar
- [43]Campbell E, Khurana A, and Montanaro A, Applying quantum algorithms to constraint satisfaction problems, arXiv: 1810.05582 [quant-ph].Google Scholar
- [44]Liu W Z, Zhang J F, and Long G L, A parallel quantum algorithm for the satisfiability problem, Common. Theor. Phys., 2008, 49(3): 629–630.zbMATHCrossRefGoogle Scholar
- [45]Laarhoven T, Mosca M, and van de Pol J, Solving the shortest vector problem in lattices faster using quantum search, PQCrypto 2013, Ed. by Gaborit P, LNCS 7932, Springer, Berlin, Heidelberg, 2013, 83–101, also available: arXiv: 1301.6176v1 [cs.CR].Google Scholar
- [46]Faugère J C, Horan K, Kahrobaei D, et al., Fast quantum algorithm for solving multivariate quadratic equations, arXiv: 1712.07211 [cs.CR].Google Scholar
- [47]He X Y, Sun X M, Yang G, et al., Exact quantum query complexity of weight decision problems, arXiv: 1801.05717v1 [quant-ph].Google Scholar
- [48]Le Gall F and Nishimura H, Quantum algorithms for matrix products over semirings, Chicago Journal of Theoretical Computer Science, 2017, 1: 1–25.MathSciNetzbMATHCrossRefGoogle Scholar
- [49]Dürr C and Høyer P, A quantum algorithm for finding the minimum, arXiv: quant-ph/9607014.Google Scholar
- [50]Kowada L A B, Lavor C, Portugal R, et al., A new quantum algorithm for solving the minimum searching problem, International Journal of Quantum Information, 2008, 6(3): 427–436.zbMATHCrossRefGoogle Scholar
- [51]Brassard G, Høyer P, and Tapp A, Quantum Counting, Automata, Languages and Programming, Eds. by Larsen K G, et al., LNCS 1443, Springer, Berlin, Heidelberg, 1998, 820–831.Google Scholar
- [52]Brassard G, Høyer P, and Mosca M, Quantum amplitude amplification and estimation, Quantum Computation and Quantum Information, 2002, 305: 53–74.MathSciNetzbMATHCrossRefGoogle Scholar
- [53]Brassard G, Høyer P, and Tapp A, Quantum cryptanalysis of hash and claw-free functions, LATIN’98: Theoretical Informatics, Eds. by Lucchesi C L and Moura A V, LNCS 1380, Springer, Berlin, Heidelberg, 1998, 163–169.CrossRefGoogle Scholar
- [54]Aaronson S and Shi Y, Quantum lower bounds for the collision and the element distinctness problems, Journal of the ACM, 2004, 51(4): 595–605.MathSciNetzbMATHCrossRefGoogle Scholar
- [55]Wang X, Yao A, and Yao F, Cryptanalysis on SHA-1, http://csrc.nist.gov/groups/ST/hash/documents/Wang SHA1-New-Result.pdf.Google Scholar
- [56]Cochran M, Notes on the Wang, et al. 263 SHA-1 Differential Path, https://eprint.iacr.org/2007/474.pdf.Google Scholar
- [57]Hoffstein J, Pipher J, and Silverman J H, NTRU: A ring-based public key cryptosystem, Algorithmic Number Theory, Ed. by Buhler J P, LNCS 1423, Springer, Berlin, Heidelberg, 1998, 267–288.CrossRefGoogle Scholar
- [58]Fluhrer S, Quantum cryptanalysis of NTRU, Cryptology ePrint Archive: Report 2015/676, 2015.Google Scholar
- [59]Childs A M, Universal computation by quantum walk, Phys. Rev. Lett., 2009, 102: 180501.MathSciNetCrossRefGoogle Scholar
- [60]Magniez F, Santha M, and Szegedy M, Quantum algorithms for the triangle problem, SIAM J. Comput., 2007, 37(2): 413–424.MathSciNetzbMATHCrossRefGoogle Scholar
- [61]Jeffery S, Kothari R, and Magniez F, Nested quantum walks with quantum data structures, Proc. SODA 2013, SIAM, Philadelphia, 2013, 1474–1485.Google Scholar
- [62]Belovs A and Reichardt B W, Span programs and quantum algorithms for st-connectivity and claw detection, European Symp. on Algorithms, Eds. by Epstein L, et al., LNCS 7501, Springer, Berlin, Heidelberg, 2012, 193–204.zbMATHGoogle Scholar
- [63]Buhrman H, Cleve R, de Wolf R, et al., Bounds for small-error and zero-error quantum algorithms, Proc. FOCS 1999, IEEE, New York, 1999, 358–368.Google Scholar
- [64]Dürr C, Heiligman M, and Høyer P, Quantum query complexity of some graph problems, SIAM J. Comput., 2006, 35(6): 1310–1328.MathSciNetzbMATHCrossRefGoogle Scholar
- [65]Ambainis A, Kempe J, and Rivosh A., Coins make quantum walks faster, Proc. SODA 2005, SIAM, Philadelphia, 2005, 1099–1108.Google Scholar
- [66]Tulsi A, Faster quantum-walk algorithm for the two-dimensional spatial search, Phys. Rev. A, 2008, 78: 012310.zbMATHCrossRefGoogle Scholar
- [67]Magniez F, Nayak A, Richter P C, et al., On the hitting times of quantum versus random walks, Algorithmica, 2012, 63(1): 91–116.MathSciNetzbMATHCrossRefGoogle Scholar
- [68]Aaronson S and Ambainis A, Quantum search of spatial regions, Theory of Computing, 2005, 1: 47–79.MathSciNetzbMATHCrossRefGoogle Scholar
- [69]Childs A M, Cleve R, Jordan S P, et al., Discrete-query quantum algorithm for NAND trees, Theory of Computing, 2009, 5: 119–123.MathSciNetzbMATHCrossRefGoogle Scholar
- [70]Ambainis A, Childs A M, Reichardt B W, et al., Any AND-OR formula of size N can be evaluated in time n 1/2+o(1) on a quantum computer, SIAM J. Comput., 2010, 39(6): 2513–2530.MathSciNetzbMATHCrossRefGoogle Scholar
- [71]Reichardt B W, Faster quantum algorithm for evaluating game trees, Proc. SODA 2011, SIAM, Philadelphia, 2011, 546–559.Google Scholar
- [72]Reichardt B W, Reflections for quantum query algorithms, Proc. SODA 2011, SIAM, Philadelphia, 2011, 560–569.Google Scholar
- [73]Reichardt B W and Spalek R, Span-program-based quantum algorithm for evaluating formulas, Theory of Computing, 2012, 8: 291–319.MathSciNetzbMATHCrossRefGoogle Scholar
- [74]Childs A M and Kothari R, Quantum query complexity of minor-closed graph properties, SIAM Journal on Computing, 2012, 41(6): 1426–1450.MathSciNetzbMATHCrossRefGoogle Scholar
- [75]Le Gall F, Improved quantum algorithm for triangle finding via combinatorial arguments, Proc. FOCS 2014, IEEE, Philadelphia, 2014, 216–225.Google Scholar
- [76]Lee T, Magniez F, and Santha M, Improved quantum query algorithms for triangle finding and associativity testing, Algorithmica, 2017, 77: 459–486.MathSciNetzbMATHCrossRefGoogle Scholar
- [77]Bernstein D J, Jeffery S, Lange T, et al., Quantum algorithms for the subset-sum problem, Post-Quantum Cryptography, Ed. by Gaborit P, LNCS 7932, Springer, Berlin, Heidelberg, 2013, 16–33.CrossRefzbMATHGoogle Scholar
- [78]Ambainis A, Quantum walk algorithm for element distinctness, SIAM J. Comput., 2007, 37: 210–239.MathSciNetzbMATHCrossRefGoogle Scholar
- [79]Magniez F and Nayak A, Quantum complexity of testing group commutativity, Algorithmica, 2007, 48(3): 221–232.MathSciNetzbMATHCrossRefGoogle Scholar
- [80]Buhrman H and Spalek R, Quantum verification of matrix products, Proc. SODA 2006, SIAM, Philadelphia, 2006, 880–889.Google Scholar
- [81]Le Gall F, Improved output-sensitive quantum algorithms for Boolean matrix multiplication, Proc. SODA 2012, SIAM, Philadelphia, 2012, 1464–1476.Google Scholar
- [82]Dorn S and Thierauf T, The quantum query complexity of algebraic properties, Fundamentals of Computation Theory, Eds. by Csuhaj-Varjú E, et al, LNCS 4639, Springer, Berlin, Heidelberg, 2007, 250–260.CrossRefzbMATHGoogle Scholar
- [83]Feynman R, Quantum mechanical computer, Optics News, 1985, 11: 11–20.CrossRefGoogle Scholar
- [84]Chase B A and Landhal A J, Universal quantum walks and adiabatic algorithms by 1d Hamiltonians, arXiv: 0802.1207 [quant-ph].Google Scholar
- [85]Farhi E and Gutmann S, Quantum computation and decision trees, Phys. Rev. A, 1998, 58: 915–928.MathSciNetCrossRefGoogle Scholar
- [86]Meyer D, From quantum cellular automata to quantum lattice gases, J. Stat. Phys., 1996, 85: 551–574.MathSciNetzbMATHCrossRefGoogle Scholar
- [87]Nayak A and Vishvanath A, Quantum walk on the line, arXiv: quant-ph/0010117.Google Scholar
- [88]Strauch F W, Connecting the discrete and continuous-time quantum walks, Phys. Rev. A, 2006, 74: 030301.MathSciNetCrossRefGoogle Scholar
- [89]Childs A M, On the relationship between continuous- and discrete-time quantum walk, Communications in Mathematical Physics, 2010, 294(2): 581–603.MathSciNetzbMATHCrossRefGoogle Scholar
- [90]Ambainis A, Bach E, Nayak A, et al., One-dimensional quantum walks, Proc. STOC 2001, ACM Press, New York, 2001, 37–49.Google Scholar
- [91]Kempe J, Discrete quantum walks hit exponentially faster, Probability Theory and Related Fields, 2005, 133(2): 215–235.MathSciNetzbMATHCrossRefGoogle Scholar
- [92]Shenvi N, Kempe J, and Whaley K B, A quantum random-walk search algorithm, Phys. Rev. A, 2003, 67: 052307.CrossRefGoogle Scholar
- [93]Childs A M, Cleve R, Deotto E, et al., Exponential algorithmic speedup by quantum walk, Proc. STOC 2003, ACM Press, New York, 2003, 59–68.Google Scholar
- [94]Childs A M, Farhi E, and Gutmann S, An example of the difference between quantum and classical random walks, Quantum Inf. Process, 2002, 1(1 & 2): 35–43.MathSciNetzbMATHCrossRefGoogle Scholar
- [95]Szegedy M, Quantum speed-up of markov chain based algorithms, Proc. FOCS 2004, IEEE, Rome, 2004, 32–41.Google Scholar
- [96]Magniez F, Nayak A, Roland J, et al., Search via quantum walk, SIAM J. Comput., 2011, 40(1): 142–164.MathSciNetzbMATHCrossRefGoogle Scholar
- [97]Childs A M, Jeffery S, Kothari R, et al., A time-efficient quantum walk for 3-distinctness using nested updates, arXiv: 1302.7316 [quant-ph].Google Scholar
- [98]Farhi E, Goldstone J, and Gutmann S, A quantum algorithm for the Hamiltonian NAND tree, Theory of Computing, 2008, 4: 169–190.MathSciNetzbMATHCrossRefGoogle Scholar
- [99]Harrow A W, Hassidim A, and Lloyd S, Quantum algorithm for solving linear systems of equations, Phys. Rev. Lett., 2009, 103(15): 150502.MathSciNetCrossRefGoogle Scholar
- [100]Lloyd S, Universal quantum simulators, Science, 1996, 273(5278): 1073–1078.MathSciNetzbMATHCrossRefGoogle Scholar
- [101]Suzuki M, General theory of fractal path integrals with applications to many-body theories and statistical physics, Journal of Mathematical Physics, 1991, 32(2): 400–407.MathSciNetzbMATHCrossRefGoogle Scholar
- [102]Aharonov D and Ta-Shma A, Adiabatic quantum state generation and statistical zero knowledge, Proc. STOC 2003, ACM Press, New York, 2003, 20–29.Google Scholar
- [103]Berry D W, Ahokas G, Cleve R, et al., Efficient quantum algorithms for simulating sparse Hamiltonians, Comm. Math. Phys., 2007, 270(2): 359–371.MathSciNetzbMATHCrossRefGoogle Scholar
- [104]Childs A M and Kothari R, Simulating sparse Hamiltonians with star decompositions, Theory of Quantum Computation, Communication, and Cryptography, Eds. by van Dam W, et al., LNCS 6519, Springer-Verlag Berlin Heidelberg, 2011, 94–103.CrossRefGoogle Scholar
- [105]Berry D W and Childs A M, Black-box Hamiltonian simulation and unitary implementation, Quantum Information and Computation, 2012, 12: 29–62.MathSciNetzbMATHGoogle Scholar
- [106]Berry D W, Childs A M, Cleve R, et al., Simulating Hamiltonian dynamics with a truncated Taylor series, Phys. Rev. Lett., 2015, 114: 090502.CrossRefGoogle Scholar
- [107]Berry D W, Childs A M, and Kothari R, Hamiltonian simulation with nearly optimal dependence on all parameters, Proc. FOCS 2015, IEEE, Berkeley, 2015, 792–809.Google Scholar
- [108]Low G H and Chuang I L, Hamiltonian simulation by qubitization, arXiv: 1610.06546v2 [quantph].Google Scholar
- [109]Chakraborty S, Gilyén A, and Jeffery S, The power of block-encoded matrix powers: Improved regression techniques via faster Hamiltonian simulation, arXiv: 1804.01973v1 [quant-ph].Google Scholar
- [110]Gilyén A, Su Y, Low G H, et al., Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics, arXiv: 1806.01838 [quant-ph].Google Scholar
- [111]Childs A M and Kothari R, Limitations on the simulation of non-sparse Hamiltonians, Quantum Information and Computation, 2010, 10: 669–684.MathSciNetzbMATHGoogle Scholar
- [112]Rebentrost P, Steffens A, and Lloyd S, Quantum singular value decomposition of non-sparse low-rank matrices, Phys. Rev. A, 2018, 97: 012327.MathSciNetCrossRefGoogle Scholar
- [113]Kerenidis I and Prakash A, Quantum recommendation system, Proc. ITCSC 2017, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2017, 49: 1–21.Google Scholar
- [114]Wang C H and Wossnig L, A quantum algorithm for simulating non-sparse Hamiltonians, arXiv: 1803.08273v1 [quant-ph].Google Scholar
- [115]Childs A M, Kothari R, and Somma R D, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision, SIAM J. Comput., 2017, 46: 1920–1950.MathSciNetzbMATHCrossRefGoogle Scholar
- [116]Ambainis A, Variable time amplitude amplification and quantum algorithms for linear algebra problems, Proc. STACS 2012, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2012, 636–647.Google Scholar
- [117]Saad Y, Iterative Methods for Sparse Linear Systems, 2nd edition, Society for Industrial and Applied Mathematics, 2003.zbMATHCrossRefGoogle Scholar
- [118]Clader B D, Jacobs B C, and Sprouse C R, Preconditioned quantum linear system algorithm, Phys. Rev. Lett., 2013, 110: 250504.CrossRefGoogle Scholar
- [119]Wossnig L, Zhao Z K, and Prakash A, Quantum linear system algorithm for dense matrices, Phys. Rev. Lett., 2018, 120: 050502.MathSciNetCrossRefGoogle Scholar
- [120]Chen Y A and Gao X S, Quantum algorithms for Boolean equation solving and quantum algebraic attack on cryptosystems, arXiv: 1712.06239v3 [quant-ph].Google Scholar
- [121]Chen Y A, Gao X S, and Yuan C M, Quantum algorithms for optimization and polynomial systems solving over finite fields, arXiv: 1802.03856v2 [quant-ph].Google Scholar
- [122]Schuld M and Petruccione F, Supervised Learning with Quantum Computers, Springer, 2018.zbMATHCrossRefGoogle Scholar
- [123]Wittek P, Quantum Machine Learning: What Quantum Computing Mean to Data Mining, Academic Press, 2014.zbMATHGoogle Scholar
- [124]Wiebe N, Braun D, and Lloyd S, Quantum algorithm for data fitting, Phys. Rev. Lett., 2012, 109(5): 050505.CrossRefGoogle Scholar
- [125]Schuld M, Sinayskiy I, and Petruccione F, Prediction by linear regression on a quantum computer, Phys. Rev. A, 2016, 94: 022342.CrossRefGoogle Scholar
- [126]Wang G M, Quantum algorithm for linear regression, Phy. Rev. A, 2017, 96: 012335.MathSciNetCrossRefGoogle Scholar
- [127]Lloyd S, Mohseni M, and Rebentrost P, Quantum algorithms for supervised and unsupervised machine learning, arXiv: 1307.0411v2 [quant-ph].Google Scholar
- [128]Lloyd S, Rebentrost P, and Mohseni M, Quantum principal component analysis, Nature Physics, 2014, 10: 631–633.CrossRefGoogle Scholar
- [129]Rebentrost P, Mohseni M, and Lloyd S, Quantum support vector machine for big data classification, Phys. Rev. Lett., 2014, 113(13): 130503.CrossRefGoogle Scholar
- [130]Rebentrost P, Bromley T R, Weedbrook C, et al., Quantum recurrent neural network, Phys. Rev. A, 2018, 98: 042308.CrossRefGoogle Scholar
- [131]Altaisky M V, Quantum neural network, arXiv: quant-ph/0107012v2.Google Scholar
- [132]Schuld M, Sinayskiy I, and Petruccione F, The quest for a quantum neural network, Quantum Inf. Process, 2014, 13: 2567–2586.MathSciNetzbMATHCrossRefGoogle Scholar
- [133]Schuld M, Sinayskiy I, and Petruccione F, Simulating a perceptron on a quantum computer, Phys. Lett. A, 2015, 379: 660–663.zbMATHCrossRefGoogle Scholar
- [134]Wan K H, Dahlsten O, Kristjánsson H, et al., Quantum generalisation of feedforward neural networks, NPJ Quantum Information, 2017, 3(1): 36–43.CrossRefGoogle Scholar
- [135]Wiebe N, Kapoor A, and Svore K, Quantum perceptron models, Advances in Neural Information Processing Systems, 2016, 29: 3999–4007.Google Scholar
- [136]Yamamoto A Y, Sundqvist K M, Li P, et al., Simulation of a multidimensional input quantum perceptron, Quantum Inf. Process, 2018, 17(6): 128–139.MathSciNetzbMATHCrossRefGoogle Scholar
- [137]Schützhold R, Pattern recognition on a quantum computer, Phys. Rev. A, 2003, 67: 062311.CrossRefGoogle Scholar
- [138]Trugenberger C A, Quantum pattern recognition, Quantum Inf. Process, 2002, 1(6): 471–493.MathSciNetCrossRefGoogle Scholar
- [139]Ventura D and Martinez T, Quantum associative memory, Information Sciences, 2000, 124(1): 273–296.MathSciNetCrossRefGoogle Scholar
- [140]Low G H, Yoder T J, and Chuang I L, Quantum inference on Bayesian networks, Phys. Rev. A, 2014, 89: 062315.CrossRefGoogle Scholar
- [141]Sentís G, Calsamiglia J, Muñoz-Tapia R, et al., Quantum learning without quantum memory, Scientific Reports, 2012, 2(708): 1–8.Google Scholar
- [142]Barry J, Barry D T, and Aaronson S, Quantum POMDPs, Phys. Rev. A, 2014, 90: 032311.CrossRefGoogle Scholar
- [143]Clark L A, Huang W, Barlow T M, et al., Hidden quantum Markov models and open quantum systems with instantaneous feedback, Interdisciplinary Symposium on Complex Systems, Eds. by Sanayei A, et al., ECC 14, Springer, Cham, 2015, 143–151.Google Scholar
- [144]Adachi S H and Henderson M P, Application of quantum annealing to training of deep neural networks, arXiv: 1510.06356 [quant-ph].Google Scholar
- [145]Wiebe N, Kapoor A, and Svore K, Quantum deep learning, arXiv: 1412.3489 [quant-ph].Google Scholar
- [146]Amin M H, Andriyash E, Rolfe J, et al., Quantum Boltzmann machine, Phys. Rev. X, 2018, 8: 021050.Google Scholar
- [147]Crawford D, Levit A, Ghadermarzy N, et al., Reinforcement learning using quantum Boltzmann machines, arXiv: 1612.05695 [quant-ph].Google Scholar
- [148]Kieferova M and Wiebe N, Tomography and generative data modeling via quantum Boltzmann training, Phys. Rev. A, 2017, 96: 062327.CrossRefGoogle Scholar
- [149]Messiah A, Quantum Mechanics, Vol. II. Wiley, New Jersey, 1976.zbMATHGoogle Scholar
- [150]Farhi E, Goldstone J, Gutmann S, et al., Quantum computation by adiabatic evolution, arXiv: quant-ph/0001106v1.Google Scholar
- [151]Childs A M, Farhi E, and Preskill J, Robustness of adiabatic quantum computation, Phys. Rev. A, 2001, 65: 012322.CrossRefGoogle Scholar
- [152]Roland J and Cerf N, Quantum search by local adiabatic evolution, Phys. Rev. A, 2002, 65: 042308.CrossRefGoogle Scholar
- [153]Aharonov D, van Dam W, Kempe J, et al., Adiabatic quantum computation is equivalent to standard quantum computation, SIAM J. Comput., 2007, 37(1): 166–194.MathSciNetzbMATHCrossRefGoogle Scholar
- [154]Childs A M, Farhi E, Goldstone J, et al., Finding cliques by quantum adiabatic evolution, Quantum Information and Computation, 2002, 2(181): 181–191.MathSciNetzbMATHGoogle Scholar
- [155]Farhi E, Goldstone F, Gutmann S, et al., A quantum adiabatic evolution algorithm applied to instances of an NP-complete problem, Science, 2001, 292(5516): 472–475.MathSciNetzbMATHCrossRefGoogle Scholar
- [156]Hogg T, Adiabatic quantum computing for random satisfiability problems, Phys. Rev. A, 2003, 67: 022314.CrossRefGoogle Scholar
- [157]Reichardt B W, The quantum adiabatic optimization algorithm and local minima, Proc. STOC 2004, ACM Press, New York, 2004, 502–510.Google Scholar
- [158]van Dam W and Vazirani U V, Limits on quantum adiabatic optimization, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.2905&rep=rep1&type=pdf.Google Scholar
- [159]Neven H, Denchev V S, Rose E, et al., Training a binary classifier with the quantum adiabatic algorithm, arXiv: 0811.0416 [quant-ph].Google Scholar
- [160]Pudenz K L and Lidar D A, Quantum adiabatic machine learning, Quantum Inf. Process, 2013, 12(5): 2027–2070.MathSciNetzbMATHCrossRefGoogle Scholar
- [161]Gaitan F and Clark L, Ramsey numbers and adiabatic quantum computing, Phys. Rev. Lett., 2012, 108: 010501.CrossRefGoogle Scholar
- [162]Gaitan F and Clark L, Graph isomorphism and adiabatic quantum computing, Phys. Rev. A, 2014, 89(2): 022342.CrossRefGoogle Scholar
- [163]Kitaev A Y, Fault-tolerant quantum computation by anyons, Annals of Physics, 2003, 303(1): 2–30.MathSciNetzbMATHCrossRefGoogle Scholar
- [164]Freedman M H, Kitaev A, Larsen M J, et al., Topological quantum computation, Bull. Amer. Math. Soc., 2003, 40: 31–38.MathSciNetzbMATHCrossRefGoogle Scholar
- [165]Aharonov D, Jones V, and Landau Z, A polynomial quantum algorithm for approximating the jones polynomial, Proc. STOC 2006, ACM Press, New York, 2006, 427–436.Google Scholar
- [166]Aharonov D, Arad I, Eban E, et al., Polynomial quantum algorithms for additive approximations of the potts model and other points of the tutte plane, arXiv: quant-ph/0702008.Google Scholar
- [167]Wocjan P and Yard J, The Jones polynomial: Quantum algorithms and applications in quantum complexity theory, Quantum Information and Computation, 2008, 8(1): 147–180.MathSciNetzbMATHGoogle Scholar
- [168]Arad I and Landau Z, Quantum computation and the evaluation of tensor networks, SIAM J. Comput., 2010, 39(7): 3089–3121.MathSciNetzbMATHCrossRefGoogle Scholar
- [169]Aaronson S, The limits of quantum computers, Scientific American, 2008, 298(3): 62–69.CrossRefGoogle Scholar
- [170]Aaronson S, BQP and the polynomial hierarchy, Proc. STOC 2010, ACM Press, New York, 2010, 141–150.Google Scholar
- [171]Mahadev U, Classical Verification of Quantum Computations, arXiv: 1804.01082v2 [quant-ph].Google Scholar
- [172]Cirac J and Zoller P, Quantum computation with cold trapped ions, Phys. Rev. Lett., 1995, 74: 4091–4094.CrossRefGoogle Scholar
- [173]Gershenfeld N and Chuang I L, Bulk spin resonance quantum computing, Science, 1997, 275: 350–356.MathSciNetzbMATHCrossRefGoogle Scholar
- [174]Loss D and Di Vincenzo D, Quantum computation with quantum dots, Phys. Rev. A, 1998, 57: 120–126.CrossRefGoogle Scholar
- [175]Vandersypen L M K, Steffen M, Breyta G, et al., Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance, Nature, 2001, 414(6866): 883–887.CrossRefGoogle Scholar
- [176]Zhao Z, Chen Y A, Zhang A N, et al., Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature, 2004, 430(6995): 54–58.CrossRefGoogle Scholar
- [177]12-qubits reached in quantum information quest, https://www.sciencedaily.com/releases/2006/05/060508164700.htm.Google Scholar
- [178]World’s First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference, https://www.nanowerk.com/news/newsid=3274.php.Google Scholar
- [179]Dwave System’s 128 qubit chip has been made, https://www.nextbigfuture.com/2008/12/dwavesystems-128-qubit-chip-has-been.html.Google Scholar
- [180]Monz T, Schindler P, Barreiro J T, et al., 14-Qubit Entanglement: Creation and Coherence, Phys. Rev. Lett., 2011, 106(13): 130506.CrossRefGoogle Scholar
- [181]D-wave systems breaks the 1000 qubit quantum computing barrier, https://www.dwavesys.com/press-releases/d-wave-systems-breaks-1000-qubit-quantum-computing-barrier.Google Scholar
- [182]O’Malley P J J, Babbush R, Kivlichan I D, et al., Scalable quantum simulation of molecular energies, Phys. Rev. X, 2016, 6: 031007.Google Scholar
- [183]IBM just made a 17 qubit quantum processor, its most powerful one yet, https://motherboard.vice.com/enus/article/wnwk5w/ibm-17-qubit-quantum-processor-computer-google.Google Scholar
- [184]Quantum inside: Intel manufactures an exotic new chip, https://www.technologyreview.com/s/609094/quantum-inside-intel-manufactures-an-exotic-new-chip/.Google Scholar
- [185]IBM Q Experience, https://quantumexperience.ng.bluemix.net/qx/experience.Google Scholar
- [186]Coles P J, Eidenbenz S, Pakin S, et al., Quantum Algorithm Implementations for Beginners, arXiv: 1804.03719v1 [cs.ET].Google Scholar
- [187]China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat regular computer next year, https://www.nextbigfuture.com/2017/05/chinabuilds-ten-qubit-quantum-computer-and-will-scale-to-20-qubits-by-end-of-this-year-and-couldany-beat-regular-computer-next-year.html.Google Scholar
- [188]IBM raises the bar with a 50-qubit quantum computer, https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/.Google Scholar
- [189]D-wave announces d-wave 2000q quantum computer and first system order, https://www.dwavesys.com/press-releases/d-wave-announces-d-wave-2000q-quantum-computer-and-first-system-order.Google Scholar
- [190]CES 2018: Intel’s 49-qubit chip shoots for quantum supremacy, https://spectrum.ieee.org/techtalk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy.Google Scholar
- [191]Google moves toward quantum supremacy with 72-qubit computer, https://www.sciencenews.org/article/google-moves-toward-quantum-supremacy-72-qubit-computer.Google Scholar
- [192]Lu C Y, Browne D E, and Yang T, Demonstration of a compiled version of Shor’s quantum factoring algorithm Using Photonic Qubits, Phys. Rev. Lett., 2007, 99: 250504.CrossRefGoogle Scholar
- [193]Lanyon B P, Weinhold T J, Langford N K, et al., Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement, Phys. Rev. Lett., 2007, 99(25): 250505.CrossRefGoogle Scholar
- [194]Martin-Lopez E, Laing A, Lawson T, et al., Experimental realisation of Shor’s quantum factoring algorithm using qubit recycling, Nat. Photon., 2012, 6: 773–776.CrossRefGoogle Scholar
- [195]Chuang I L, Gershenfeld N, and Kubinec M, Experimental implementation of fast quantum searching, Phys. Rev. Lett., 1998, 80: 3408–3411.CrossRefGoogle Scholar
- [196]Vandersypen L M K, Steffen M, Sherwood M H, et al., Implementation of a three-quantum-bit search algorithm, Appl. Phys. Lett., 2000, 76: 646–648.CrossRefGoogle Scholar
- [197]Barz S, Kassal I, and Ringbauer M, Solving systems of linear equations on a quantum computer, Sci. Rep., 2014, 4: 115.Google Scholar
- [198]Cai X D, Weedbrook C, Su Z E, et al., Experimental quantum computing to solve systems of linear equations, Phys. Rev. Lett., 2013, 110(23): 230501.CrossRefGoogle Scholar
- [199]Pan J W, Cao Y D, Yao X W, et al., Experimental realization of quantum algorithm for solving linear systems of equations, Phys. Rev. A, 2014, 89: 022313.CrossRefGoogle Scholar
- [200]Ambainis A, New Developments in Quantum Algorithms, Mathematical Foundations of Computer Science, Eds. by Hlineny P, et al., LNCS 6281, Springer, Berlin, Heidelberg, 2010, 1–11.Google Scholar
- [201]Cleve R, Ekert A, Macchiavello C, et al., Quantum algorithms revisited, Proc. R. Soc. A, 1997, 454(1969): 339–354.MathSciNetzbMATHCrossRefGoogle Scholar
- [202]Montanaro A, Quantum algorithms: An overview, npj Quantum Information, 2016, 2: 15023.CrossRefGoogle Scholar
- [203]Shor P W, Progress in quantum algorithms, Quantum Inf. Process, 2004, 3: 5–13.MathSciNetzbMATHCrossRefGoogle Scholar
- [204]Sun X M, A survey on quantum computing, Sci. China Inf. Sci., 2016, 8: 982–1002 (in Chinese).Google Scholar
- [205]Dervovic D, Herbster M, Mountney P, et al., Quantum linear systems algorithms: A primer, arXiv: 1802.08227v1 [quant-ph].Google Scholar
- [206]Kaye P, Laflamme R, and Mosca M, An Introduction to Quantum Computing, Oxford University Press, New York, 2007.zbMATHGoogle Scholar
- [207]Rieffel E and Polak W, Quantum Computing — A Gentle Introduction, The MIT Press, Cambridge, Massachusetts London, England, 2011.zbMATHGoogle Scholar
- [208]Ambainis A, Quantum walks and their algorithmic applications, International Journal of Quantum Information, 2003, 1: 507–518.zbMATHCrossRefGoogle Scholar
- [209]Elías S, Venegas-Andraca S E, Quantum walks: A comprehensive review, Quantum Inf. Process, 2012, 11(5): 1015–1106.MathSciNetzbMATHCrossRefGoogle Scholar
- [210]Nayak A, Richter P C, and Szegedy M, Quantum analogs of markov chains, Encyclopedia of Algorithms, Ed. by Kao M Y, Springer, Berlin, Heidelberg, 2014, 1–10.Google Scholar
- [211]Santha M, Quantum walk based search algorithms, Proc. TAMC 2008, Xi’an, 2008, 31–46.Google Scholar
- [212]Kempe J, Quantum random walks - an introductory overview, Contemporary Physics, 2003, 44(4): 307–327.CrossRefGoogle Scholar
- [213]Childs A M, Maslov D, Nam Y, et al., Toward the first quantum simulation with quantum speedup, Proceedings of the National Academy of Sciences, 2018, 115: 9456–9461.MathSciNetCrossRefGoogle Scholar
- [214]Adcock J C, Allen E, Day M, et al., Advances in quantum machine learning, arXiv: 1512.02900v1 [quant-ph].Google Scholar
- [215]Arunachalam S and de Wolf R, A Survey of Quantum Learning Theory, arXiv:1701.06806v3[quant-ph].Google Scholar
- [216]Biamonte J, Wittek P, Pancotti N, et al., Quantum machine learning, Nature, 2017, 549: 195–202.CrossRefGoogle Scholar
- [217]Ciliberto C, Herbster M, Ialongo A D, et al., Quantum machine learning: A classical perspective, Proc. R. Soc. A, 2018, 474(2209): 20170551.MathSciNetzbMATHCrossRefGoogle Scholar
- [218]Dunjko V and Briegel H J, Machine learning & artificial intelligence in the quantum domain, arXiv: 1709.02779v1 [quant-ph].Google Scholar
- [219]Schuld M, Sinayskiy I, and Petruccione F, An introduction to quantum machine learning, Contemporary Physics, 2015, 56(2): 172–185.zbMATHCrossRefGoogle Scholar
- [220]Albash T and Lidar D A, Adiabatic quantum computing, Rev. Mod. Phys., 2018, 90: 015002.CrossRefGoogle Scholar
- [221]Quantum algorithm zoo, https://math.nist.gov/quantum/zoo/.Google Scholar
- [222]Childs A M, Lecture notes on quantum algorithms, http://www.cs.umd.edu/amchilds/qa/.Google Scholar
- [223]Christopher M D and Nielsen A, The Solovay-Kitaev algorithm, Quantum Information and Computation, 2006, 6(1): 81–95.MathSciNetzbMATHGoogle Scholar
- [224]Abrams D S and Lloyd S, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors, Phys. Rev. Lett., 1999, 83(24): 5162–5165.CrossRefGoogle Scholar
- [225]Buhrman H, Cleve R, Watrous J, et al., Quantum fingerprinting, Phys. Rev. Lett., 2001, 87(16): 167902.CrossRefGoogle Scholar
- [226]Long G L, General quantum interference principle and duality computer, Common. Theor. Phys., 2006, 45: 825–844.MathSciNetCrossRefGoogle Scholar
- [227]Childs A M and Wiebe N, Hamiltonian simulation using linear combinations of unitary operations, Quantum Information and Computation, 2012, 12: 901–924.MathSciNetzbMATHGoogle Scholar
- [228]Kerenidis I and Prakash A, Quantum gradient descent for linear systems and least squares, arXiv: 1704.04992v3 [quant-ph].Google Scholar
- [229]Rebentrost P, Schuld M, Wossnig L, et al., Quantum gradient descent and Newton’s method for constrained polynomial optimization, arXiv: 1612.01789v2 [quant-ph].Google Scholar
- [230]Grover L K and Rudolph T, Creating superpositions that correspond to efficiently integrable probability distributions, arXiv: quant-ph/0208112.Google Scholar
- [231]Soklakov A N and Schack R, Efficient state preparation for a register of quantum bits, Phys. Rev. A, 2006, 73: 012307.CrossRefGoogle Scholar
- [232]Alpaydin E, Introduction to Machine Learning, 3rd Edition, The MIT Press, Massachusetts, 2015.zbMATHGoogle Scholar
- [233]Mackay D, Information Theory, Inference and Learning Algorithms, Cambridge University Press, Cambridge, 2003.zbMATHGoogle Scholar
- [234]Sra S, Nowozin S, and Wright S J, Optimization for Machine Learning, The MIT Press, Massachusetts, 2011.CrossRefGoogle Scholar
- [235]Golub G H and Van Loan C F, Matrix Computations, 4th Edition, The John Hopkins University Press, Baltimore, MD, 2013.zbMATHGoogle Scholar
- [236]Hestenes M R and Stiefel E, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 1952, 49: 409–436.MathSciNetzbMATHCrossRefGoogle Scholar
- [237]Aaronson S, Quantum Machine Learning Algorithms: Read the Fine Print, Nature Physics, 2015, 11(4): 291–293.CrossRefGoogle Scholar
- [238]Childs A M, Quantum algorithms: Equation solving by simulation, Nature Physics, 2009, 5(5): 861.CrossRefGoogle Scholar
- [239]Harrow A W, Quantum algorithms for systems of linear equations, Encyclopedia of Algorithms, Ed. by Kao M Y, Springer, Berlin, Heidelberg, 2016, 1680–1683.CrossRefGoogle Scholar
- [240]Giovannetti V, Lloyd S, and Maccone L, Architectures for a quantum random access memory, Phys. Rev. A, 2008, 78: 052310.zbMATHCrossRefGoogle Scholar
- [241]Giovannetti V, Lloyd S, and Maccone L, Quantum random access memory, Phys. Rev. Lett., 2008, 100: 160501.MathSciNetzbMATHCrossRefGoogle Scholar
- [242]Kerenidis I and Prakash A, A quantum interior point method for LPs and SDPs, arXiv: 1808.09266v1 [quant-ph].Google Scholar
- [243]Bardet M, Faugère J C, Salvy B, et al., On the complexity of solving quadratic boolean systems, Journal of Complexity, 2013, 29(1): 53–75.MathSciNetzbMATHCrossRefGoogle Scholar
- [244]Hastie T, Tibshirani R, and Friedman J, The Elements of Statistical Learning, Springer, New York, 2001.zbMATHCrossRefGoogle Scholar
- [245]Haykin S, Neural Networks and Learning Machines, 3rd Edition, Pearson, 2009.Google Scholar
- [246]Cleveland W S, Robust locally weighted regression and smoothing scatterplots, Journal of the American Statistical Association, 1979, 74(368): 829–836.MathSciNetzbMATHCrossRefGoogle Scholar
- [247]Cleveland W S and Devlin S J, Locally-weighted regression: An approach to regression analysis by local fitting, Journal of the American Statistical Association, 1988, 83(403): 596–610.zbMATHCrossRefGoogle Scholar
- [248]Ng A, Supervised learning, discriminative algorithms, http://cs229.stanford.edu/notes/cs229-notes1.pdf.Google Scholar
- [249]Suykens J A K and Vandewalle J, Least squares support vector machine classifiers, Neural Processing Letters, 1999, 9(3): 293–300.CrossRefGoogle Scholar
- [250]Levin D A, Peres Y, and Wilmer E L, Markov Chains and Mixing Times, American Mathematical Society, Providence, Rhode Island, 2009.Google Scholar
- [251]Lovász L, Random walks on graphs — A survey, Combinatorics, 1993, 1–46.zbMATHGoogle Scholar
- [252]Gerschgorin S, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk, 1931, 7: 749–754.zbMATHGoogle Scholar
- [253]Høyer P and Komeili M, Efficient quantum walk on the grid with multiple marked elements, STACS 2017, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2017, 42:1–42:14.Google Scholar
- [254]Watrous J, Quantum simulations of classical random walks and undirected graph connectivity, Journal of Computer and System Sciences, 2001, 62(2): 376–391.MathSciNetzbMATHCrossRefGoogle Scholar
- [255]Aharonov D, Ambainis A, Kempe J, et al., Quantum walks on graphs, Proc. STOC 2001, ACM Press, New York, 2001, 50–59.Google Scholar
- [256]Kendon V, Quantum walks on general graphs, Int. J. Quantum Inf., 2006, 4(5): 791–805.zbMATHCrossRefGoogle Scholar
- [257]Potocek V, Gabris A, Kiss T, et al., Optimized quantum random-walk search algorithms on the hypercube, Phys. Rev. A, 2009, 79: 012325.CrossRefGoogle Scholar
- [258]Tonchev H, Alternative coins for quantum random walk search optimized for a hypercube, Journal of Quantum Information Science, 2015, 5: 6–15.CrossRefGoogle Scholar
- [259]Ambainis A, Quantum search with variable times, Theory of Computing Systems, 2010, 47(3): 786–807.MathSciNetzbMATHCrossRefGoogle Scholar
- [260]Boyer M, Brassard G, Høyer P, et al., Tight bounds on quantum searching, Fortsch. Phys. Prog. Phys., 1998, 46(4–5): 493–505.CrossRefGoogle Scholar
- [261]Grover L K, Fixed-point quantum search, Phys. Rev. Lett., 2005, 95: 150501.zbMATHCrossRefGoogle Scholar
- [262]Yoder T J, Low G H, Chuang I L, Optimal fixed-point quantum amplitude amplification using Chebyshev polynomials, Phys. Rev. Lett., 2014, 113: 210501.CrossRefGoogle Scholar
- [263]Brassard G, Høyer P, and Tapp A, Quantum algorithm for the collision problem, ACM SIGACT News, 1997, 28: 14–19.CrossRefGoogle Scholar
- [264]Falk M, Quantum search on the spatial grid, arXiv: 1303.4127 [quant-ph].Google Scholar
- [265]Buhrman H, Dürr C, Heiligman M, et al., Quantum algorithms for element distinctness, SIAM J. Comput., 2005, 34(6): 1324–1330.MathSciNetzbMATHCrossRefGoogle Scholar
- [266]Belovs A, Learning-graph-based quantum algorithm for k-distinctness, Proc. FOCS 2012, IEEE, New Brunswick, 2012, 207–216.Google Scholar
- [267]Jeffery S, Frameworks for quantum algorithms, PhD thesis, University of Waterloo, 2014.Google Scholar
- [268]Krovi H, Magniez F, Ozols M, et al., Quantum walks can find a marked element on any graph, Algorithmica, 2016, 74(2): 851–907.MathSciNetzbMATHCrossRefGoogle Scholar
- [269]Dohotaru C and Høyer P, Controlled quantum amplification, Proc. ICALP 2017, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2017, 18: 1–13.Google Scholar
- [270]Ambainis A and Kokainis M, Analysis of the extended hitting time and its properties, Proc. QIP 2015, Philadelphia, 2012.Google Scholar
- [271]Portugal R, Santos R A M, Fernandes T D, et al., The staggered quantum walk model, Quantum Information Processing, 2016, 15: 85–101.MathSciNetzbMATHCrossRefGoogle Scholar
- [272]Aggarwal D, Dadush D, and Regev O, et al., Solving the shortest vector problem in 2n time via discrete Gaussian sampling, Proc. STOC 2014, ACM Press, New York, 2014, 733–742.Google Scholar
- [273]Chen Y, Chung K, and Lai C, Space-efficient classical and quantum algorithms for the shortest vector problem, Quantum Information and Computation, 2018, 18(3 & 4): 285–307.MathSciNetGoogle Scholar
- [274]Becker A, Ducas L, and Gama N, et al., New directions in nearest neighbor searching with applications to lattice sieving, Proc. SODA 2016, SIAM, Philadelphia, 2016, 10–24.Google Scholar
- [275]Laarhoven T, Search problems in cryptography, PhD dissertation, Eindhoven University of Technology, Eindhoven, 2015.zbMATHGoogle Scholar
- [276]Ettinger M and Høyer P, On quantum algorithms for noncommutative hidden subgroups, Advances in Applied Mathematics, 2000, 25(3): 239–251.MathSciNetzbMATHCrossRefGoogle Scholar
- [277]Bacon D, Childs A M, and van Dam W, Optimal measurements for the dihedral hidden subgroup problem, Chicago Journal of Theoretical Computer Science, 2006, article 2.Google Scholar
- [278]Regev O, A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space, arXiv: quant-ph/0406151.Google Scholar
- [279]Babai L, On the complexity of canonical labeling of strongly regular graphs, SIAM J. Comput., 1980, 9: 212–216.MathSciNetzbMATHCrossRefGoogle Scholar
- [280]Spielman D A, Faster isomorphism testing of strongly regular graphs, Proc. STOC 1996, ACM Press, New York, 576–584.Google Scholar
- [281]Wang F, The Hidden Subgroup Problem, Master’s Project, Aarhus Universitet, 2010.Google Scholar
- [282]Ettinger M and Høyer P, A quantum observable for the graph isomorphism problem, arXiv: quant-ph/9901029.Google Scholar
- [283]Beals R, Quantum computation of Fourier transforms over symmetric groups, Proc. STOC 1997, ACM Press, New York, 1997, 48–53.Google Scholar
- [284]Boneh D and Lipton R J, Quantum cryptanalysis of hidden linear functions, Advances in Cryptology CRYPTO’95, Ed. by Coppersmith D, LNCS 963, Springer-Verlag Berlin, Heidelberg, 1995, 424–437.Google Scholar
- [285]Hallgren S, Moore C, Roetteler M, et al., Limitations of quantum coset states for graph isomorphism, J. ACM, 2010, 57(6): 1–33.MathSciNetCrossRefGoogle Scholar
- [286]Moore C, Russell A, and Schulman L J, The symmetric group defies strong fourier sampling, SIAM J. Comput., 2008, 37(6): 1842–1864.MathSciNetzbMATHCrossRefGoogle Scholar
- [287]Kawano Y and Sekigawa H, Quantum fourier transform over symmetric groups, Proc. ISSAC 2013, ACM Press, New York, 2013, 227–234.Google Scholar
- [288]Kawano Y and Sekigawa H, Quantum Fourier transform over symmetric groups - improved result, J. Symb. Comp., 2016, 75: 219–243.MathSciNetzbMATHCrossRefGoogle Scholar
- [289]Williams V V and Williams R, Subcubic equivalences between path, matrix and triangle problems, Proc. FOCS 2010, IEEE, Las Vegas, 2010, 645–654.Google Scholar
- [290]Williams V V and Williams R, Finding, minimizing, and counting weighted subgraphs, SIAM J. Comput., 2013, 42(3): 831–854.MathSciNetzbMATHCrossRefGoogle Scholar
- [291]Williams R, A new algorithm for optimal 2-constraint satisfaction and its implications, Theor. Comput. Sci., 348(2–3): 357–365.Google Scholar
- [292]Belovs A, Span programs for functions with constant-sized 1-certificates, Proc. STOC 2012, ACM Press, New York, 2012, 77–84.Google Scholar
- [293]Grötschel M, Lovász L, and Schrijver A, Geometric Algorithms and Combinatorial Optimization, Springer, New York, 1988.zbMATHCrossRefGoogle Scholar
- [294]Lee Y T, Sidford A, and Wong S C, A faster cutting plane method and its implications for combinatorial and convex optimization, Proc. FOCS 2015, IEEE, Berkeley, 2015, 1049–1065.Google Scholar
- [295]Brandão F G S L and Svore K M, Quantum speed-ups for solving semidefinite programs, Proc. FOCS 2017, IEEE, Berkeley, 2017, 415–426.Google Scholar
- [296]Apeldoorn J van, Gilyén A, Gribling S, et al., Quantum SDP-solvers: Better upper and lower bounds, Proc. FOCS 2017, IEEE, Berkeley, 2017, 403–414.Google Scholar
- [297]Apeldoorn J van and Gilyén A, Improvements in quantum SDP-solving with applications, arXiv: 1804.05058 [quant-ph].Google Scholar
- [298]Brandão F G S L, Kalev A, Li T Y, et al., Quantum SDP solvers: Large speed-ups, optimality, and applications to quantum learning, arXiv: 1710.02581v2 [quant-ph].Google Scholar
- [299]Lee Y T, Sidford A, and Vempala S S, Efficient convex optimization with membership oracles, arXiv: 1706.07357 [cs.DS].Google Scholar
- [300]Chakraborty S, Childs A M, Li T Y, et al., Quantum algorithms and lower bounds for convex optimization, arXiv: 1809.01731 [quant-ph].Google Scholar
- [301]Apeldoorn J van, Gilyén A, Gribling S, et al., Convex optimization using quantum oracles, arXiv: 1809.00643v1 [quant-ph].Google Scholar
- [302]Grassl M, Langenberg B, and Roetteler M, et al., Applying Grover’s Algorithm to AES: Quantum Resource Estimates, PQCrypto 2016, Ed. by Takagi T, LNCS 9606, Springer, Cham 2016, 29–43.Google Scholar
- [303]Amy M, Di Matteo O, and Gheorghiu V, et al., Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3, Selected Areas in Cryptography, Eds. by Avanzi R and Heys H, LNCS 10532, Springer, Cham, 2017, 317–337.Google Scholar
- [304]Dunjko V, Ge Y M, and Cirac I, Computational speedups using small quantum devices, arXiv: 1807.08970 [quant-ph].Google Scholar
- [305]Schuld M, Bocharov A, Svore K, et al., Circuit-centric quantum classifiers, arXiv: 1804.00633 [quant-ph].Google Scholar