Journal of Systems Science and Complexity

, Volume 32, Issue 5, pp 1473–1478 | Cite as

Primality Testing for Numbers of the Form h · 2n ± 1

  • Dandan HuangEmail author
  • Yunling KangEmail author


This paper studies the problem of primality testing for numbers of the form h · 2n ± 1, where h < 2n is odd, and n is a positive integer. The authors describe a Lucasian primality test for these numbers in certain cases, which runs in deterministic quasi-quadratic time. In particular, the authors construct a Lucasian primality test for numbers of the form 3 · 5 · 17 · 2n ± 1, where n is a positive integer, in half of the cases among the congruences of n modulo 12, by means of a Lucasian sequence with a suitable seed not depending on n. The methods of Bosma (1993), Berrizbeitia and Berry (2004), Deng and Huang (2016) can not test the primality of these numbers.


Lucasian primality test Lucasian sequence primality testing reciprocity law 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agrawal M, Kayal N, and Saxena N, PRIMES is in P, Ann. Math., 2004, 160(2): 781–793.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Lucas E, Théorie des fonctions numériques simplement périodiques, Amer. J. Math., 1878, 1: 184–240, 289–321.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Lehmer D H, On Lucas’s test for the primality of Mersenne’s numbers, J. London Math. Soc., 1935, 10: 162–165.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Bosma W, Explicit primality criteria for h · 2k ± 1, Math. Comp., 1993, 61(203): 97–109.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Berrizbeitia P and Berry T G, Biquadratic reciprocity and a Lucasian primality test, Math. Comp., 2004, 73(247): 1559–1564.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Deng Y and Huang D, Explicit primality criteria for h · 2k ± 1, Journal de Théorie des Nombres de Bordeaux, 2016, 28(1): 55–74.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Marcus D, Number Fields, Springer-Verlag, New York, 1977.CrossRefGoogle Scholar
  8. [8]
    Cohen H, A course in Computational Algebraic Number Theory, third, corrected printing, Graduate Texts in Mathematics, vol. 138, Springer, New York, 1996.Google Scholar

Copyright information

© The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  1. 1.School of Software Engineering and School of CybersecurityJinling Institute of TechnologyNanjingChina
  2. 2.School of Statistics and MathematicsNanjing Audit UniversityNanjingChina

Personalised recommendations