Advertisement

What counts as science? Expansive learning actions for teaching and learning science with bilingual children

  • Patricia Martínez-ÁlvarezEmail author
Original Paper
  • 22 Downloads

Abstract

Science education should help children acquire sophisticated understandings about science, how it is done, and how they can be scientists. Consequently, there is a need to explore how minoritized children’s linguistic and cultural resources can be employed in the science classroom. This study examined how perceptions of science teaching and learning in bilingual contexts shift from a single tradition to more expansive understandings. Following cultural historical activity theory (CHAT), mediators and turning points were explored to provide evidence for expansive learning. This analysis focused on data from 25 children and four teacher candidates participating in a Spanish bilingual after-school program. To answer the research questions, expansive and non-expansive actions (i.e., speech segments and multimedia products generated in the 10 after-school sessions) were analyzed mostly qualitatively, and supported with descriptive quantitative patterns. Through the analysis, specific mediators and contextual characteristics were identified as turning points for expansive learning. The in-depth analysis of the four after-school sessions including both discourse and multimedia data, revealed the existence of a turning point in one session during which there was a discussion using a video and a multimodal embodied experience with clay. This session included turn and talks, and closed with a whole-group debriefing. Additionally, the study found that the multimedia artifacts (actions around photographs and videos) were more conducive to expansiveness than those with discursive data only. The study concludes that culturally relevant artifacts, combined with instructional moves that accept bilingual children’s expansive ways of understanding science, stimulate expansive learning. This study provides ways to explore how bilingual children’s out-of-school knowledges can merge with science knowledge in schools, and helps illuminate the role of multiple activity systems in the teaching and learning process. Furthermore, the study highlights the importance of having pre-service teachers explore the potential of children’s out-of-school knowledges in spaces such as after-school programs where curricular and instructional restrictions are lessened, and that thus favor more expansive forms of teaching and learning.

Keywords

Bilingual education Teacher preparation Science education Cultural historical activity theory Elementary education 

Resumen

La educación científica debe ayudar a que las/os niñas/os entiendan la ciencia de forma sofisticada, aprendan a hacer ciencia, y comprendan cómo pueden ser científicas/os. Consecuentemente, es necesario explorar la forma en que los recursos lingüísticos y culturales de los niños minorizados pueden ser utilizados en la clase de ciencias. Este estudio ha examinado el cambio evolutivo de percepciones acerca de la enseñanza y el aprendizaje en contextos bilingües de una tradición más exclusiva y reducida a una más expansiva. Siguiendo la teoría socio-cultural histórica centrada en la actividad (CHAT), el presente estudio ha explorado los mediadores y puntos de inflexión, o cambios de dirección, para proveer evidencia de la expansión del aprendizaje. El análisis se hizo con datos obtenidos con 25 niños y cuatro candidatas de magisterio que participaron en una actividad extra-escolar (o programa de después de la escuela) que era bilingüe en español. Con la intención de responder a las preguntas de investigación, este estudio consistió en el análisis, mayoritariamente cualitativo, pero apoyado con análisis de patrones descriptivos de origen cuantitativo de acciones (ejm. segmentos discursivos y productos multimodales) expansivas y no-expansivas. El análisis permitió la identificación de mediadores específicos y características de contexto que motivaron cambios de dirección hacia formas más expansivas de aprendizaje. El análisis minucioso de las cuatro sesiones del programa extra-escolar que incluyeron tanto datos discursivos como de multimedia, reveló la existencia de un punto de inflexión decisivo durante una sesión donde hubo una discusión centrada en un vídeo y una experiencia multimodal y corporal con el uso de arcilla. Esta sesión incluyó la dinámica de volverse hacia un/a compañera/o para compartir y se cerró con una discusión de grupo. Adicionalmente, el estudio averigüó que los artefactos de multimedia (ejm. acciones centradas en fotografías y vídeos) facilitaron más la expansión, que aquellos que solo incluían discurso oral. El estudio concluyó que la expansión del aprendizaje es estimulada por el uso de artefactos que son relevantes culturalmente, combinados con decisiones en la enseñanza que aceptan las formas expansivas de entender ciencias de las/os niñas/os bilingües. El estudio provee formas de explorar cómo los conocimientos que las/os niñas/os adquieren fuera de la escuela pueden unirse con el conocimiento de la ciencia en las escuelas, y el papel que los diferentes sistemas de actividad adquieren como parte del proceso de aprendizaje y enseñanza. Así mismo, el estudio resalta la importancia de que las/os estudiantes de magisterio exploren el potencial del conocimiento que las/os niñas/os adquieren fuera de la escuela en espacios extra-escolares donde las restricciones curriculares y educativas se reducen, favoreciendo formas de enseñar y aprender de naturaleza más expansiva.

Notes

Acknowledgements

Research reported in this publication was supported by the Pedagogy of Social Imagination in Language Learning and Teaching (PSILLT), United States Department of Education, Office of English Language Acquisition, National Professional Development Grant number T365Z120187 under the direction of Professor María E. Torres-Guzmán. The PSILLT project is National Professional Development Grant (CFDA# 84.365Z)-funded by the Office of English Acquisition, U.S. Department of Education, for 2012-2015. The content is solely the responsibility of the authors and does not necessarily represent the official views of the offices of USDE, OELA.

References

  1. Abbott, A. (1997). The concept of turning point. Comparative Social research, 16, 85–105.Google Scholar
  2. Abbott, A. (2001). Time matters. Chicago, IL: University of Chicago Press.Google Scholar
  3. Arreguín-Anderson, M. G. (2015). Bilingual Latino students learn science for fun while developing language and cognition: Biophilia at a La Clase Mágica site. Global Education Review, 2(2), 43–58.Google Scholar
  4. Bhabha, H. K. (1994). The location of culture. New York: Routledge.Google Scholar
  5. Buxton, C. A., Salinas, A., Mahotiere, M., Lee, O., & Secada, W. (2015). Fourth-Grade emergent bilingual learners’ scientific reasoning complexity, controlled experiment practices, and content knowledge when discussing school, home, and play contexts. Teachers College Record, 117(2), 1–36.Google Scholar
  6. Calabrese Barton, A., & Tan, E. (2009). Funds of knowledge and discourses and hybrid space. Journal of Research in Science Teaching, 46(1), 50–73.  https://doi.org/10.1002/tea.20269.Google Scholar
  7. Canizares, S., & Chessen, B. (1999). Science outside. New York, NY: Scholastic.Google Scholar
  8. Ciechanowski, K. M. (2014). Weaving together science and English: An interconnected model of language development for emergent bilinguals. Bilingual Research Journal, 37(3), 237–262.  https://doi.org/10.1080/15235882.2014.963737.Google Scholar
  9. Cole, M. (1988). Cross-cultural research in the sociohistorical tradition. Human Development, 31, 137–151.  https://doi.org/10.1159/000275803.Google Scholar
  10. Creswell, J. W. (1998). Qualitative inquire and research design: Choosing among five traditions. Thousand Oaks, CA: Sage.Google Scholar
  11. Dewey, J. (1938). Logic: The theory of inquiry. New York, NY: Henry Holt and Company INC.Google Scholar
  12. Donovan, M. S., & Cross, C. T. (Eds.). (2002). Minority students in special and gifted education. Washington, DC: National Academy Press.Google Scholar
  13. Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki, FI: Orienta-Konsultit.Google Scholar
  14. Engeström, Y. (1988). How to do research on activity? The Quarterly Newsletter of the Laboratory of Comparative Human Cognition, 10, 30–31.Google Scholar
  15. Engeström, Y. (1996). Development as breaking away and opening up: a challenge to Vygotsky and Piaget. Swiss Journal of Psychology, 55, 126–132.Google Scholar
  16. Engeström, Y. (1999). Innovative learning in work teams: analyzing cycles of knowledge creation in practice. In Y. Engeström, R. Miettinen, & R.-L. Punamäki (Eds.), Perspectives on activity theory (pp. 377–404). Cambridge, MA: Cambridge University Press.Google Scholar
  17. Engeström, Y. (2001). Expansive learning at work: toward an activity theoretical reconceptualization. Journal of Education and Work, 14, 133–156.  https://doi.org/10.1080/13639080020028747.Google Scholar
  18. Engeström, Y., Rantavuori, R., & Kerosuo, H. (2013). Expansive learning in a library: actions, cycles and deviations from instructional intentions. Vocations and Learning, 6(1), 81–106.  https://doi.org/10.1007/s12186-012-9089-6.Google Scholar
  19. Furman, M., & Calabrese Barton, A. (2006). Capturing urban student voices in the creation of a science mini-documentary. Journal of Research in Science Teaching, 43, 667–694.  https://doi.org/10.1002/tea.20164.Google Scholar
  20. Gee, J. P. (1996). Social linguistics and literacies: Ideology in discourses (2nd ed.). London: Taylor & Francis.Google Scholar
  21. Ghiso, M. P., Martínez-Álvarez, P., & Dernikos, B. P. (2013). Writing from and with community knowledge: First-grade emergent bilinguals’ engagements with technology-integrated curricula. In K. E. Pytash & R. E. Ferdig (Eds.), Exploring technology in writing and writing instruction (pp. 169–185). Hershey, PA: IGI Global.Google Scholar
  22. Gonzalez, N., & Moll, L. (2002). Cruzando el Puente: Building bridges to funds of knowledge. Educational Policy, 16(4), 623–641.  https://doi.org/10.1177/0895904802016004009.Google Scholar
  23. Griffith, A. L. (2010). Persistence of women and minorities in STEM field majors: Is it the school that matters? Economics of Education Review, 29(6), 911–922.  https://doi.org/10.1016/j.econedurev.2010.06.010.Google Scholar
  24. Gutiérrez, K. D. (2008). Developing a sociocritical literacy in the third space. Reading research quarterly, 43(2), 148–164.  https://doi.org/10.1598/RRQ.43.2.3.Google Scholar
  25. Hogan, K. (2000). Exploring a process view of students’ knowledge about the nature of science. Science Education, 84, 51–70.  https://doi.org/10.1002/(SICI)1098-237X(200001)84:1%3c51:AID-SCE5%3e3.0.CO;2-H.Google Scholar
  26. Il’enkov, E. V. (1977). Dialectical logic: Essays in its history and theory. Moscow: Progress.Google Scholar
  27. Jewitt, C. (2013). Multimodality and digital technologies in the classroom. In I. de Saint-Georges & J.-J. Weber (Eds.), Multilingualism and multimodality: Current challenges for educational studies (pp. 141–152). Rotterdam: Sense Publishers.Google Scholar
  28. Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. New York: Continuum.Google Scholar
  29. Lee, O. (2005). Science education with English language learners: Synthesis and research agenda. Review of Educational Research, 75(4), 491–521.  https://doi.org/10.3102/00346543075004491.Google Scholar
  30. Lee, O., & Fradd, S. H. (1998). Science for all, including students from non-English language backgrounds. Educational Researcher, 27(3), 12–21.Google Scholar
  31. Lee, O., Quinn, H., & Valdés, G. (2013). Science and language for English language learners in relation to next generation science standards and with implications for common core state standards for english language arts and mathematics. Educational Researcher, 42(4), 223–233.  https://doi.org/10.3102/0013189X13480524.Google Scholar
  32. Leont’ev, A. N. (1978). Activity, consciousness, and personality. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  33. Martínez-Álvarez, P. (2017a). Multigenerational learning for expanding the educational involvement of bilinguals experiencing academic difficulties. Curriculum Inquiry, 47(3), 263–289.  https://doi.org/10.1080/03626784.2017.1324734.Google Scholar
  34. Martínez-Álvarez, P. (2017b). Special ways of knowing in science: Expansive learning opportunities with bilingual children with learning disabilities. Cultural Studies of Science Education, 12(3), 521–553.  https://doi.org/10.1007/s11422-016-9732-x.Google Scholar
  35. Martínez-Álvarez, P., Pantin, L. E., & Kajamaa, A. (2019). Creating shared access: bilingual teachers and children using technology to multimodally negotiate understandings in science and language. Multiple Voices for Ethnically Diverse Exceptional Learners. (forthcoming).Google Scholar
  36. McEneaney, E. H., López, F., & Nieswandt, M. (2014). Instructional models for the acquisition of English as bridges into school science: Effects on the science achievement of U.S. Hispanic English language learners. Learning Environments Research, 17, 305–318.  https://doi.org/10.1007/s10984-014-9160-3.Google Scholar
  37. Miettinen, Engeström, & Punamäki, (1999). Perspectives on activity theory. Cambridge, MA: Cambridge University Press.Google Scholar
  38. Moje, E. B., Ciechanowski, K. M., Kramer, K., Ellis, L., Carrillo, R., & Collazo, T. (2004). Working toward third space in content area literacy: an examination of everyday funds of knowledge and discourse. Reading Research Quarterly, 39(1), 38–70.  https://doi.org/10.1598/RRQ.39.1.4.Google Scholar
  39. Moje, E. B., Collazo, T., Carrillo, R., & Marx, R. W. (2001). “Maestro, what is ‘quality’?”: Language, literacy, and discourse in project-based science. Journal of Research in Science Teaching, 38(4), 469–498.  https://doi.org/10.1002/tea.1014.Google Scholar
  40. Moll, L. C., Amanti, C., Neff, D., & González, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. Theory into Practice, 31, 132–141.  https://doi.org/10.1080/00405849209543534.Google Scholar
  41. National Science Foundation. (1998). Infusing equity in systemic reform: an implementation scheme. Washington, DC: Author.Google Scholar
  42. NGSS Lead States. (2013). Next generation science standards: for states, by states. Washington, DC: The National Academies Press.Google Scholar
  43. Prieto, L., Arreguín-Anderson, M. G., Yuen, T. T., Ek, L. D., Sánchez, P., Machado-Casas, M., et al. (2016). Four cases of a sociocultural approach to mobile learning in La Clase Mágica, an after-school technology club. Interactive Learning Environments, 24(2), 345–356.  https://doi.org/10.1080/10494820.2015.1113711.Google Scholar
  44. Rosebery, A. S. (2005). “What are we going to do next?” A case study of lesson planning. In R. Nemirovsky, A. Rosevery, B. B. Warren, & J. Solomon (Eds.), Everyday matters in mathematics and science: studies of complex classroom events (pp. 299–328). Mahwah, NJ: Erlbaum.Google Scholar
  45. Rosebery, A., & Warren, B. (2008). Teaching science to English language learners. Washington, DC: NSTA Press.Google Scholar
  46. Settlage, J., Madsen, A., & Rustad, K. (2005). Inquiry science, sheltered instruction, and English learners: Conflicting pedagogies in highly diverse classrooms. Issues in Teacher Education, 14(1), 39–57.Google Scholar
  47. Stevenson, A. D. (2015). “Why in this bilingual classroom. Hablamos Más Español?” Language choice by bilingual science students. Journal of Latinos and Education, 14, 25–39.  https://doi.org/10.1080/15348431.2014.944704.Google Scholar
  48. Terrazas-Arellanes, F. E., Knox, C., & Rivas, C. (2013). Collaborative online projects for English language learners in science. Cultural Studies of Science Education, 8, 953–971.  https://doi.org/10.1007/s11422-013-9521-8.Google Scholar
  49. Ünsal, Z., Jakobson, B., Wickman, P.-O., & Molander, B.-O. (2018). Gesticulating science: emergent bilingual students’ use of gestures. Journal of Research in Science Teaching, 55(1), 121–144.  https://doi.org/10.1002/tea.21415.Google Scholar
  50. Valenzuela, A., & Jaramillo, N. E. (2005). The politics of reform in an era of “Texas-style” accountability: an interview with Angela Valenzuela. InterActions: UCLA Journal of Education and Information Studies, 1(2). Retrieved from https://escholarship.org/uc/item/1rv5017r. Accessed 15 Jan 2018.
  51. Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  52. Warren, B., Ballenger, C., Ogonowski, M., Rosebery, A. S., & Hudicourt-Barnes, J. (2001). Rethinking diversity in learning science: The logic of everyday sense-making. Journal of Research in Science Teaching, 38, 529–552.  https://doi.org/10.1002/tea.1017.Google Scholar
  53. Westby, C., & Atrencio, D. J. (2002). Computers, culture, and learning. Topics in Language Disorders, 22(4), 70–87.  https://doi.org/10.1097/00011363-200208000-00006.Google Scholar
  54. Yair, G. (2009). Cinderellas and ugly ducklings: Positive turning points in students’ educational careers’ exploratory evidence and future agenda. British Educational Research Journal, 35, 351–370.  https://doi.org/10.1080/01411920802044388.Google Scholar
  55. Zhang, Y. (2016). Multimodal teacher input and science learning in a middle school sheltered classroom. Journal of Research in Science Teaching, 55(1), 7–30.  https://doi.org/10.1002/tea.21295.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Bilingual/Bicultural Education, Teachers CollegeColumbia UniversityNew YorkUSA

Personalised recommendations