Targeting the administration of ecdysterone in doping control samples

  • Maria Kristina ParrEmail author
  • Gabriella Ambrosio
  • Bernhard Wuest
  • Monica Mazzarino
  • Xavier de la Torre
  • Francesca Sibilia
  • Jan Felix Joseph
  • Patrick Diel
  • Francesco Botrè
Original Article



The phytosteroid ecdysterone was recently reported to enhance performance in sports and may thus be considered as a substance of relevance in anti-doping control. To trace back an administration of ecdysterone from urine samples, analytical properties have been investigated to assess its integration into initial testing procedures (ITP) in doping control laboratories.


Analytical properties of ecdysterone were evaluated using gas chromatography-quadrupole/time-of-flight-mass spectrometry (GC–QTOF–MS) and liquid chromatography (LC)–QTOF–MS. Its metabolism and elimination in human were studied using urines collected after administration.


The detectability of ecdysterone by GC–MS (after derivatization) and/or LC–MS(/MS) has been demonstrated and sample preparation methods were evaluated. Dilute-and-inject for LC–MS(/MS) or solid phase extraction using Oasis HLB for GC–MS or LC–MS were found most suitable, while liquid–liquid extraction was hampered by the high polarity of ecdysteroids.

Most abundantly, ecdysterone was detected in the post administration urines as parent compound besides the metabolite desoxy-ecdysterone. Additionally, desoxy-poststerone was tentatively assigned as minor metabolite, however, further investigations are needed.


An administration of ecdysterone can be targeted using existing procedures of anti-doping laboratories. Ecdysterone and desoxy-ecdysterone appeared as suitable candidates for integration in ITP. Using dilute-and-inject a detection of the parent compound was possible for more than 2 days after the administration of a single dose of ~ 50 mg.


Doping control Monitoring program Ecdysterone Urine analysis LC–MS/MS GC–MS Accurate mass 



The World Anti-Doping Agency is acknowledged for their financial support (research grant 18C18MP). Mrs. Maxi Wenzel, Freie Universitaet Berlin, is acknowledged for technical assistance.

Compliance with Ethical Standards

Conflict of interest

The authors declare no other conflict of interest.

Ethical approval

All urine samples were anonymized and handled in accordance with the ethical standards of the Helsinki Declaration.

Informed consent

Informed consent form was signed by the volunteer.


  1. 1.
    Parr MK, Zhao P, Haupt O, Ngueu ST, Hengevoss J, Fritzemeier KH, Piechotta M, Schlorer N, Muhn P, Zheng WY, Xie MY, Diel P (2014) Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone. Mol Nutr Food Res 58(9):1861–1872. CrossRefPubMedGoogle Scholar
  2. 2.
    Tchoukouegno Ngueu S (2013) Bioactivity of plants secondary metabolites: Estrogenic, cytotoxic and anabolic effects on estrogen target organs of an extract of Erythrina excelsa and Ecdysterone. PhD, German Sport University, CologneGoogle Scholar
  3. 3.
    Kumpun S, Girault JP, Dinan L, Blais C, Maria A, Dauphin-Villemant C, Yingyongnarongkul B, Suksamrarn A, Lafont R (2011) The metabolism of 20-hydroxyecdysone in mice: relevance to pharmacological effects and gene switch applications of ecdysteroids. J Steroid Biochem Mol Biol 126(1–2):1–9. CrossRefPubMedGoogle Scholar
  4. 4.
    Wilborn CD, Taylor LW, Campbell BI, Kerksick C, Rasmussen CJ, Greenwood M, Kreider RB (2006) Effects of methoxyisoflavone, ecdysterone, and sulfo-polysaccharide supplementation on training adaptations in resistance-trained males. J Int Soc Sports Nutr 3:19–27. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zwetsloot KA, Shanely AR, Merritt EK, McBride JM (2014) Phytoecdysteroids: a novel, non-androgenic alternative for muscle health and performance. J Steroids Hormon Sci 12(01):10–12. CrossRefGoogle Scholar
  6. 6.
    Gorelick-Feldman J, Maclean D, Ilic N, Poulev A, Lila MA, Cheng D, Raskin I (2008) Phytoecdysteroids increase protein synthesis in skeletal muscle cells. J Agric Food Chem 56(10):3532–3537. CrossRefPubMedGoogle Scholar
  7. 7.
    Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57(3):325–339CrossRefGoogle Scholar
  8. 8.
    Dinan L (2009) The Karlson lecture. Phytoecdysteroids: what use are they? Arch Insect Biochem Physiol 72(3):126–141. CrossRefPubMedGoogle Scholar
  9. 9.
    Dinan L, Lafont R (2006) Effects and applications of arthropod steroid hormones (ecdysteroids) in mammals. J Endocrinol 191(1):1–8. CrossRefPubMedGoogle Scholar
  10. 10.
    Lafont R, Dinan L (2003) Practical uses for ecdysteroids in mammals including humans: an update. J Insect Sci 3:7. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Courtheyn D, Le Bizec B, Brambilla G, De Brabander HF, Cobbaert E, de Wiele AV, Vercammen J, De Wasch K (2002) Recent developments in the use and abuse of growth promoters. Anal Chim Acta 473(1–2):71–82. CrossRefGoogle Scholar
  12. 12.
    Toth N, Szabo A, Kacsala P, Heger J, Zador E (2008) 20-Hydroxyecdysone increases fiber size in a muscle-specific fashion in rat. Phytomedicine 15(9):691–698. CrossRefPubMedGoogle Scholar
  13. 13.
    Bathori M, Toth N, Hunyadi A, Marki A, Zador E (2008) Phytoecdysteroids and anabolic-androgenic steroids–structure and effects on humans. Curr Med Chem 15(1):75–91CrossRefGoogle Scholar
  14. 14.
    Slama K, Koudela K, Tenora J, Mathova A (1996) Insect hormones in vertebrates: anabolic effects of 20-hydroxyecdysone in Japanese quail. Experientia 52(7):702–706. CrossRefPubMedGoogle Scholar
  15. 15.
    Slama K, Kodkoua M (1975) Insect hormones and bioanalogues: their effect on respiratory metabolism in Dermestes vulpinus L (Coleoptera). Biol Bull 148(2):320–332. CrossRefPubMedGoogle Scholar
  16. 16.
    Burdette W, Coda R (1963) Effect of ecdysone on the incorporation of 14C-Leucine into hepatic protein in vitro. Proc Soc Exp Biol Med 112:216–217CrossRefGoogle Scholar
  17. 17.
    Okui S, Otaka T, Uchiyama M, Takemoto T, Hikino H (1968) Stimulation of protein synthesis in mouse liver by insect-moulting steroids. Chem Pharm Bull (Tokyo) 16(2):384–387. CrossRefGoogle Scholar
  18. 18.
    Arking R, Shaaya E (1969) Effect of ecdysone on protein synthesis in the larval fat body of Calliphora. J Insect Physiol 15(2):287–296CrossRefGoogle Scholar
  19. 19.
    Parr MK, Botre F, Nass A, Hengevoss J, Diel P, Wolber G (2015) Ecdysteroids: a novel class of anabolic agents? Biol Sport 32(2):169–173. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chermnykh NS, Shimanovskii NL, Shutko GV, Syrov VN (1988) The action of methandrostenolone and ecdysterone on the physical endurance of animals and on protein metabolism in the skeletal muscles. Farmakol Toksikol 51(6):57–60PubMedGoogle Scholar
  21. 21.
    Parr MK, Haupt O, Ngueu ST, Fritzemeier K-H, Muhn P, Diel PR (2013) Estrogen receptor beta mediated anabolic effects - insights from mechanistic studies on the phytoecdysteroid ecdysterone and selective ligands. Endocr Rev 10:SAT-340. CrossRefGoogle Scholar
  22. 22.
    Parr MK, Wolber G, Naß A, Ambrosio G, Botrè F, Diel PR (2015) ER-beta mediated action of dietary supplement ingredient edcysterone confirmed by docking experiments. Endocr Rev:FRI-270Google Scholar
  23. 23.
    Parr MK, Müller-Schöll A (2018) Pharmacology of doping agents—mechanisms promoting muscle hypertrophy. AIMS Mol Sci 5(2):145–155. CrossRefGoogle Scholar
  24. 24.
    Isenmann E, Ambrosio G, Joseph JF, Mazzarino M, de la Torre X, Zimmer P, Kazlauskas R, Goebel C, Botre F, Diel P, Parr MK (2019) Ecdysteroids as non-conventional anabolic agent: performance enhancement by ecdysterone supplementation in humans. Arch Toxicol in press. CrossRefGoogle Scholar
  25. 25.
    Syrov VN, Kurmukov AG (1976) Anabolic activity of phytoecdysone-ecdysterone isolated from Rhaponticum carthamoides (Willd) Iljin. Farmakol Toksikol 39(6):690–693PubMedGoogle Scholar
  26. 26.
    Syrov VN (1984) Mechanism of the anabolic action of phytoecdisteroids in mammals. Nauchnye Doki Vyss Shkoly Biol Nauki 11:16–20Google Scholar
  27. 27.
    Botre F, de la Torre X, Donati F, Mazzarino M (2014) Narrowing the gap between the number of athletes who dope and the number of athletes who are caught: scientific advances that increase the efficacy of antidoping tests. Br J Sports Med 48(10):833–836. CrossRefPubMedGoogle Scholar
  28. 28.
    Schanzer W, Thevis M (2017) Human sports drug testing by mass spectrometry. Mass Spectrom Rev 36(1):16–46. CrossRefPubMedGoogle Scholar
  29. 29.
    Athanasiadou I, Kiousi P, Kioukia-Fougia N, Lyris E, Angelis YS (2015) Current status and recent advantages in derivatization procedures in human doping control. Bioanalysis 7(19):2537–2556. CrossRefPubMedGoogle Scholar
  30. 30.
    Nicoli R, Guillarme D, Leuenberger N, Baume N, Robinson N, Saugy M, Veuthey JL (2016) Analytical strategies for doping control purposes: needs, challenges, and perspectives. Anal Chem 88(1):508–523. CrossRefPubMedGoogle Scholar
  31. 31.
    Lafont R, Beydon P, Blais C, Garcia M, Lachaise F, Riera F, Somme G, Girault J (1986) Ecdysteroid metabolism: a comparative study. In: Ecdysone. Elsevier, pp 11–16Google Scholar
  32. 32.
    Ramazanov NS, Saatov Z, Syrov VN (1996) Study of ecdysterone metabolites isolated from rat urine. Khim Prir Soedin 32(4):558–564Google Scholar
  33. 33.
    Tsitsimpikou C, Tsamis GD, Siskos PA, Spyridaki MH, Georgakopoulos CG (2001) Study of excretion of ecdysterone in human urine. Rapid Commun Mass Spectrom RCM 15(19):1796–1801. CrossRefPubMedGoogle Scholar
  34. 34.
    Brandt FW (2003) Pharmakokinetik und Metabolismus des 20-Hyroxyecdysons im Menschen. PhD, Philipps-Universität Marburg, MarburgGoogle Scholar
  35. 35.
    Zhu WM, Zhu HJ, Tian WS, Hao XJ, Pittman CU (2002) The selective dehydroxylation of 20-hydroxyecdysone by Zn powder and anhydrous acetic acid. Synth Commun 32(9):1385–1391. CrossRefGoogle Scholar
  36. 36.
    Mazzarino M, de la Torre X, Botre F (2008) A screening method for the simultaneous detection of glucocorticoids, diuretics, stimulants, anti-oestrogens, beta-adrenergic drugs and anabolic steroids in human urine by LC-ESI-MS/MS. Anal Bioanal Chem 392(4):681–698. CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Association of Forensic Toxicology 2019

Authors and Affiliations

  • Maria Kristina Parr
    • 1
    Email author
  • Gabriella Ambrosio
    • 1
  • Bernhard Wuest
    • 2
  • Monica Mazzarino
    • 3
  • Xavier de la Torre
    • 3
  • Francesca Sibilia
    • 3
  • Jan Felix Joseph
    • 1
    • 4
  • Patrick Diel
    • 5
  • Francesco Botrè
    • 3
    • 6
  1. 1.Institute of PharmacyFreie Universität BerlinBerlinGermany
  2. 2.Agilent TechnologiesSanta ClaraUSA
  3. 3.Laboratorio Antidoping FMSIRomeItaly
  4. 4.Core Facility BioSupraMol, Department of Biology, Chemistry, PharmacyFreie Universitaet BerlinBerlinGermany
  5. 5.Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports MedicineGerman Sport University CologneCologneGermany
  6. 6.Department of Experimental Medicine‘Sapienza’ University of RomeRomeItaly

Personalised recommendations